

FLTG, Inc. Crosby, Texas

MONTHLY PROGRESS REPORT

Submitted to:

U.S. Environmental Protection Agency - Region 6 and Texas Natural Resource Conservation Commission

January, 1995

01502308

FLTG, Inc.

Crosby, Texas

MONTHLY PROGRESS REPORT

Submitted to:

U.S. Environmental Protection Agency - Region 6 and Texas Natural Resource Conservation Commission

January, 1995

FLTG, Incorporated

CONTENTS

1.0	INTRO	DUCTION		1-1
2.0	SUMM	ARY	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2-1
	2.1	Summa	ry of Activities and Progress	2-1
		2.1.1	Health and Safety	2-1
		2.1.2	Quality/QAQC/Data Base Management	2-2
		2.1.3	Lagoon Remediation	2-2
		2.1.4	Ambient Air Management	2-3
		2.1.5	Aquifer Remediation	2-3
		2.1.6	Groundwater Treatment	2-4
		2.1.7	Wetlands Restoration	2-4
		2.1.8	Site Management and Issues	2-5
	2.2	Problem	Areas and Recommended Solutions	2-10
	2.3		s Resolved	2-10
	2.4	Delivera	ables Submitted	2-11
	2.5	Upcomi	ng/Ongoing Events and Activities	2-11
	2.6	Key Sta	Iffing Changes	2-12
	2.7	Percent	Complete	2-12
	2.8	Schedu	le	2-13
	2.9	Operation	ons and Monitoring Data	2-13
	2.10	Credits	Accrued/Applied	2-14
	2.11	Commu	nity Relations	2-15
3.0	LAGO	ON		3-1
	3.1		ry of Activities	3-1
	3.2	Problem	ns and Response Action	3-1
	3.3	Problem	ns Resolved	3-1
	3.4	Delivera	ables Submitted	3-1
	3.5	Upcomi	ing Events and Activities	3-2
4.0	GROU	NDWATE	R AND SUBSOIL REMEDIATION	4-1
	4.1	Summa	ry of Activities	4-1
		4.1.1	Operation of Production and Injection Well Systems	4-1
		4.1.2	Operational Monitoring	4-1

i

French Ltd. Project

FLTG, Incorporated

CONTENTS (Continued)

		4.1.3	Data Management and Evaluation	4-1
	4.2	Problems	and Response Actions	4-1
	4.3	Pending Is	ssues	4-10
		4.3.1	DNAPL Response	4-10
		4.3.2	S1 Unit Pulse Pumping	4-10
		4.3.3	Phreatophytes	4-10
	4.4	Operation	al Refinements	4-10
	4.5	Data Sum	mary and Discussion	4-10
		4.5.1	Groundwater Production and Injection	4-10
		4.5.2	Groundwater Levels and Flow Directions	4-10
		4.5.3	TOC in Shallow Groundwater	4-11
		4.5.4	In-Situ Bioremediation	4-11
	4.6	Schedule	••••••	4-11
5.0	GROUN	IDWATER	TREATMENT PLANT	5-1
	5.1	Summary	of Activities	5-1
	5.2	Inoculum	Nutrient Addition	5-2
	5.3	Maintena	nce	5-2
	5.4	Operating	Data	5-2
6.0	AMBIEI	NT AIR MA	NAGEMENT	6-1
	6.1	Summary	of Activities	6-1
	6.2	•	and Response Action	6-1
	6.3	Problems	Resolved	6-2
	6.4	On-going	Events/Activities	6-2
7.0	QUALI"	TY ASSUR	ANCE/QUALITY CONTROL	7-1
	7.1	Summary	of Activities	7-1
		7.1.1		7-1
		7.1.2	Data Validation Activities Summary	7-1
			7.1.2.1 Treated Water Samples	7-1
			7.1.2.2 Groundwater Samples	7-1
			7.1.2.3 Other Samples	7-1
	7.2	Data Vali	dation QC Summary and Discussion	7-2
		7.2.1	Level I and Level II QC Philosophy	7-2
		7.2.2	QA Issues	7-2
				_

French Ltd. Project

FLTG, Incorporated

CONTENTS (Continued)

			7.2.2.1 Double Blind Spike Samples	7-2									
		7.2.3	Completeness Summaries	7-7									
8.0	SITE MAINTENANCE												
	8.1	Summar	ry of Activities	8-1									
		8.1.1	General Housekeeping	8-1									
		8.1.2	Purchasing	8-1									
		8.1.3	Equipment Maintenance	8-1									
	8.2	Visitors	***************************************	8-1									
	8.3	Emerger	ncy Equipment	8-3									
		8.3.1	Flood Gate Test	8-3									
		8.3.2	P-8 Auxiliary Pump	8-3									
		8.3.3	Fire Extinguishers	8-3									
	8.4	Security		8-3									
	8.5	Operato	r Training	8-3									
	8.6	Data Ma	anagement	8-3									
	8.7	Personn	el Monitoring	8-3									
	8.8	OVM Sy	/stem	8-4									
	8.9	Reposito	ory	8-4									
9.0	WETL	ANDS RES	STORATION	9-1									
	9.1	Summa	ry of Activities and Progress	9-1									
	9.2		Areas and Solutions	9-2									
	9.3	Problem	s Resolved	9-2									
	9.4	Delivera	bles Submitted	9-2									
	9.5	Upcomi	ng Events and Activities	9-2									

French Ltd. Project

FLTG, Incorporated

CONTENTS (Continued)

LIST OF ILLUSTRATIONS

LIST OF FIGURES

4-1	Production Flows	4-7
4-2	Injection Flows	4-8
4-3	INT West Area Sand-Fracturing Plan	4-9
LIST	OF TABLES	
2-1	Ambient Air Management Time Integrated Exposure Data	2-6
2-2	Project Quality	2-7
2-3	Treated Water Results Summary	2-8
4-1	Groundwater System Operation, January, 1995	4-2
4-2	Daily Groundwater Production and TOC Removal, January, 1995	4-3
4-3	Daily Injection Flows, January, 1995	4-4
4-4	Average Production and Injection Flow Rates, January, 1995	4-5
4-5	Operational Monitoring, January, 1995	4-6
4-6	History of TOC Concentrations at S1 Production Wells	4-12
4-7	History of TOC Concentrations at INT Production Wells	4-13
4-8	Water Level Measurements	4-14
4-9	Dissolved Oxygen at Production Wells	4-17
4-10	Dissolved Oxygen at Monitoring Wells	4-20
5-1	Preventive Maintenance	5-3
5-2	Treated Water Results Summary	5-4
7-1	Samples Collected - January, 1995	7-3
7-2	Scheduled Sampling Events, January, 1995	7-5
7-3	Treated Water QC Failure Summary	7-6
7-4	Completeness Summary, MO3A Treated Water - Volatile	7-8
7-5	Organics Analyses	/-8
7-5	Completeness Summary, M03A Treated Water - Semivolatile Organic Analyses	7-9
7-6	Completeness Summary, M03A Treated Water - PCB Analyses	7-8 7-10
7-0	Completeness Summary, MOSA Treated Water - PCB Analyses	7-10

French Ltd. Project

FLTG, Incorporated

CONTENTS (Continued)

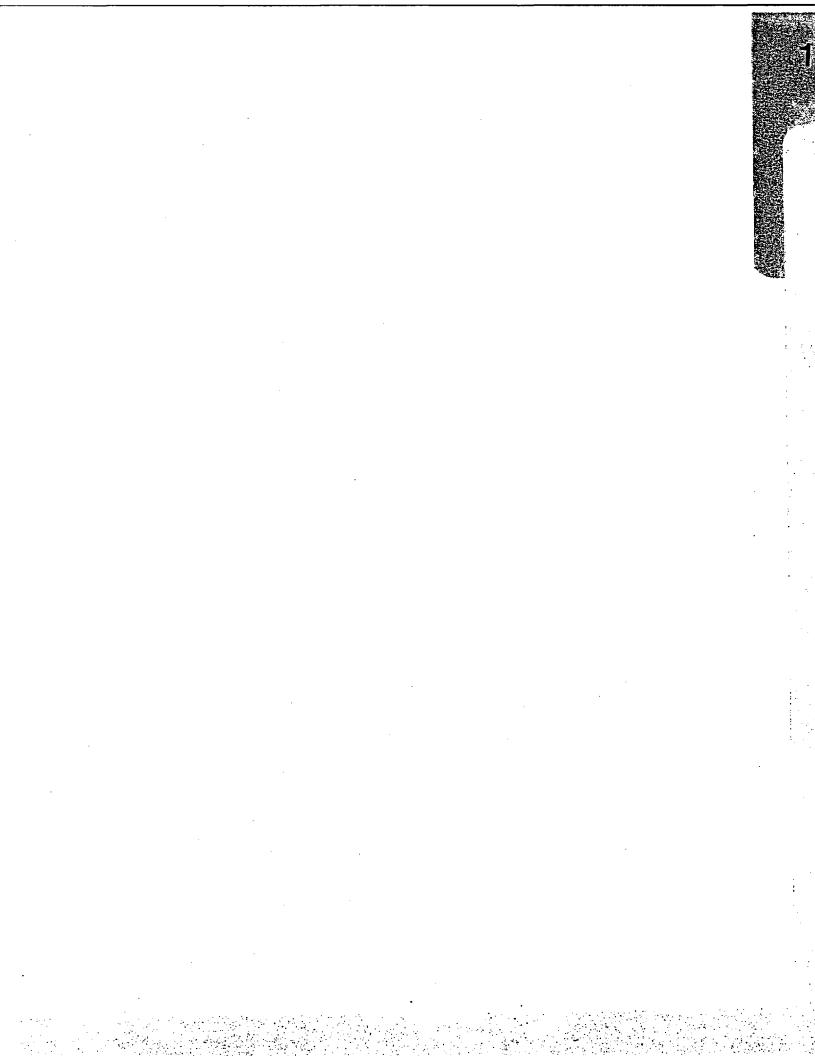
7-7	Completeness Summary, M03A Treated Water - Metals Analyses	7-11
7-8	Completeness Summary, M03A Treated Water - Miscellaneous	
	Parameters Analyses	7-14
8-1	On-Site Employee Contaminant Limits (From OSHA 29 CFR 1910 Subpart 7)	8-5

LIST OF ATTACHMENTS

4A Texas Trees Planting Proposal

8A Repository Status Report: January, 1995

LIST OF APPENDICES


Appendix A - None

Appendix B - None

Appendix C - Analytical Results -

Samples Dated January, 1995

Project I.D.	Date Received	Project I.D.	Date Received
M03A0292	1/13/95	M03A0298	1/27/95
M03A0293	1/13/95	M06C0022	1/27/95
M03A0294	1/15/95	M03A0299	1/30/95
M03A0296	1/19/95	M06B0067	1/30/95
M03A0295	1/19/95	M03A0300	1/31/95
M03A0297	1/23/95	S14K0011	1/31/95
M08D0013	1/25/95	S16B0029	1/31/95
M08C0010	1/26/95		

1.0 INTRODUCTION

This report covers the activities of FLTG, Inc. and the French Limited Project for January, 1995. FLTG, Inc. manages the project for the French Limited Task Group of Potentially Responsible Parties.

During January, 1995, the project team focused on the following activities and issues:

- Health, Safety, and Quality.
- Safety awareness.
- Contractor safety.
- HAZOP of daily work assignments.
- Detecting and correcting work place hazards.
- Response to changing site conditions.
- Treatment/handling options for Cell D water.
- Maintain DO, OUR, HMB, and plate count in Cell D.
- Vegetation evaluation in Cell E.
- Operation and maintenance of the aquifer remediation system.
- In-situ aquifer bioremediation.
- Riverdale property acquisition.
- Water treatment plant operation and maintenance.
- Operation of the data base management system.

- Wetlands project construction.
- This report includes:
 - A summary of January activities, issues, and progress.
 - Lagoon activities and issues.
 - Groundwater and Subsoil Remediation activities, issues, and progress.
 - Groundwater Treatment Plant activities and issues.
 - Ambient Air Management status.
 - QA/QC status and data.
 - Site management activities and issues.
 - Wetlands restoration activities, issues, and progress.

2.0 SUMMARY

2.1 Summary of Activities and Progress

2.1.1 Health and Safety

There were no personal injury incidents.

There were no equipment damage incidents.

All site workers earned the January safety bonus.

Conducted safety meetings and job inspections at the start of each shift; reviewed safety issues before starting all jobs.

All employees and contractors attended daily safety meetings.

Conducted daily mini-HAZOP of all specific jobs.

Supervision made 212 specific on-the-job safety contacts.

Emphasized wet, slippery conditions.

Inspected and certified all fire extinguishers.

Inspected all contractor equipment before on-site use.

Inspected all vendor delivery trucks before site entry.

Emphasized the hazards and precautions associated with working around moving equipment.

Conducted 32 specific health and safety inspections.

Logged all safety issues each shift; less than 24-hour response to all safety issues.

Replaced the daily lottery ticket safety awareness program with daily raffle ticket program; each regular site person is given 2 or 3 tickets (depending on shift length) at the start of each work shift; tickets can be lost to fellow workers for safety violations; at the end of the work shift, each person signs their name on each ticket and puts all the tickets in a locked box at the security office. A drawing is held each Monday morning, and the winner receives \$100.00. A drawing is held at the monthly safety lunch for \$200.00.

Conducted personnel exposure monitoring, and all results were within acceptable levels. The most recent results are in Table 2-1.

2.1.2 Quality/QAQC/Data Base Management

The total quality process was used. The status of the goals is shown on Table 2-2; exceeded the maintenance MH goal due to electrical work.

Raw data is being validated as per the plan.

The data base management system operated with no problems or delays.

There were no data or reports rejected due to errors.

Completed follow-up audit of AATS; all response actions have been completed.

American Analytical continued to provide data on time.

The treated water effluent continuously met criteria.

2.1.3 Lagoon

Maintained a high level of biological activity in Cell D; OUR and HMB were high. Added O_2 to Cell D using a downdraft aerator. Bottom profiles indicate low levels of soft biomass in Cell D.

Evaluated options for handling/treating Cell D water; subsurface injection in Cell E and F has potential.

Set up and started subsurface injection of Cell D water in Cell E and Cell F.

Continued evaluation of various tree and bush species for passive dewatering of the subsurface inside the floodwall.

Tested floodwall gate closure.

2.1.4 Ambient Air Management

Ambient air quality was manually checked daily with portable analyzers, and no response action was required.

Air quality was continuously monitored in all potential exposure areas and on all special jobs.

Time-integrated samples were collected in three work areas, and the results indicated no exposure; the data is shown in Table 2-1.

2.1.5 Aquifer Remediation

Monitored status of DNAPL plumes.

Continued routine S1 and INT oxygen and nutrient injection.

Continued to evaluate ways to increase INT remediation rates.

Started pressure fracturing the INT zone near low producing INT wells; sand, nutrients, and an oxygen source are being injected into the fractures; the initial results look encouraging.

Operated vacuum-enhanced pumping systems for INT wells.

Issued weekly well status and performance reports.

Inspected and adjusted all wells each day.

Continued daily maintenance of recovery and injection wells.

Completed monthly well measurements and sampling; TOC levels are still low.

Maintained O₂ content of injection water at about 40-45 ppm.

Continue pulse pumping in sections of the S1 zone South of Gulf Pump Road; the results continue to look positive.

Developing active remediation shut-off criteria. Evaluating various modeling approaches to develop specific compliance concentration levels at the compliance point.

2.1.6 Groundwater Treatment

The carbon blending system operated with no problems; the amount of effluent water requiring carbon treatment continued to decrease as the treatment plant influent water TOC decreased and as the biomass activity stabilized.

The water treatment plant operated 100% of the time.

The water treatment plant effluent data is shown in Table 2-3. The high total chlorinated hydrocarbons level on January 1, 1994, was due to surges in chlorinated hydrocarbons from the production wells.

TOC input to T-101 continued to decrease.

The process operators collected all the process water and ground water samples.

2.1.7 Wetlands Restoration

Continued site dewatering; it appears that some dewatering will be required after every significant rainfall.

Continued topsoil removal.

Continued excavation of flow channels; frequent wet weather delayed progress on site excavation.

Requested lump sum bids for the bridges.

Reviewed status, progress, and issues with the agency review committee.

2.1.8 Site Management and Issues

Used the on-site laboratory to process all the operational control samples.

Reviewed site progress and issues in detail with EPA and TNRCC on a regular basis.

Validated all analytical data as per the QAQC plan.

Reviewed project status and issues each day to ensure focus on critical issues - safety, quality and cost.

Issued weekly cost, schedule, and maintenance reports.

Reviewed progress on issues and action plans each week.

Reduced technical support MH's.

Implemented close-out of contracts and purchase orders as per the approved procedure.

TABLE 2-1

Ambient Air Management Time Integrated Exposure Data

	PEL	M01D005001	19-120-95	MO1D005002	18.120-95	M01D005003	18-Jan-95			
	8 hour	WTP Or		Well Mair		Security				
Compound	PPM	% of PEL	PPM	% of PEL	PPM	% of PEL	PPM			
		1				1				
Chloromethane	50	0.000	0.000	0.000	0.000	0.000	0.000			
Bromomethane	5	0.000	0.000	0.000	0.000	0.000	0.000			
Vinyl chloride	1	0.000	0.000	0.000	0.000	0.000	0.000			
Chloroethane	1000	0.000	0.000	0.000	0.000	0.000	0.000			
		1		ll .			1			
Dichloromethane	50	0.000	0.000	0.001	0.001	0.000	0.000			
Acetone	750	0.000	0.002	0.000	0.002	0.001	0.005			
Carbon disulfide	10	0.000	0.000	0.000	0.000	0.000	0.000			
1,1-Dichloroethene	5	0.000	0.000	0.000	0.000	0.000	0.000			
1,1-Dichloroethane	100	0.000	0.000	0.000	0.000	0.000	0.000			
trans-1,2-Dichloroethe	200	0.000	0.000	0.000	0.000	0.000	0.000			
Chloroform	10	0.007	0.001	0.001	0.000	0.000	0.000			
1,2-Dichloroethane	10	0.002	0.000	0.000	0.000	0.000	0.000			
2-Butanone	200	0.003	0.005	0.000	0.000	0.000	0.001			
		1		II		 				
1,1,1-Trichloroethane	350	0.000	0.000	0.000	0.000	0.000	0.000			
Carbon Tetrachloride	5	0.002	0.000	0.001	0.000	0.001	0.000			
Vinyl acetate	10	0.001	0.000	0.001	0.000	0.000	0.000			
Bromodichloromethane			0.000	H	0.000	H	0.000			
1,2-Dichioropropane	75	0.000	0.000	0.000	0.000	0.000	0.000			
cis-1,3-Dichloropropen	1	0.000	0.000	0.000	0.000	0.000	0.000			
Trichloroethene	50	0.000	0.000	0.000	0.000	0.000	0.000			
Dibromochloromethane			0.000	il	0.000	11	0.000			
1,1,2-Trichloroethane	10	0.000	0.000	0.000	0.000	0.000	0.000			
Benzene	1	0.033	0.000	0.064	0.001	0.015	0.000			
trans-1,3-Dichloroprop	1	0.000	0.000	0.000	0.000	0.000	0.000			
2-Chloroethylvinyl ethi	er	1	0.000	H	0.000	11	0.000			
		İ	1	11						
Bromoform	0.5	0.000	0.000	0.000	0.000	0.000	0.000			
4-Methyl-2-pentanone	50	0.002	0.001	0.000	0.000	0.001	0.000			
2-Hexanone	5	0.001	0.000	0.002	0.000	0.001	0.000			
Tetrachloroethene	50	0.000	0.000	0.000	0.000	0.000	0.000			
1,1,2,2-Tetrachloroet	1	0.000	0.000	0.008	0.000	0.000	0.000			
Toluene	100	0.004	0.004	0.003	0.003	0.000	0.000			
Chlorobenzene	10	0.000	0.000	0.000	0.000	0.000	0.000			
Ethylbenzene	100	0.000	0.000	0.000	0.000	0.000	0.000			
Styrene	50	0.000	0.000	0.000	0.000	0.000	0.000			
Xylene (total)	100	0.000	0.000	0.000	0.000	0.000	0.000			
Hexane			0.002		0.001	JL	0.000			

TABLE 2-2

Project Quality

Status as of			
01/31/95		<u>Goals</u>	
Yes	1)	No OSHA recordable injuries.	
Attention	2)	100% compliance with all safe	ety rules and procedures.
Yes	3)	No citations for violations of an appropriate regulations.	oplicable, relevant and
Yes	4)	100% attendance (including sumeetings.	ubcontractors) at daily safety
Attention	5)	Less than 24-hour response tin	ne on health and safety issues.
Yes	6)	100% sign-in and security clea	
Yes	7)	No invalidation of reported data	a due to QA/QC issues.
	8)	Spend less than:	
			MH/Month
Yes	• D	irect hire	3,000
Yes	• FI	LTG management (5 people)	700
Yes/Attention	• To	echnical support (3 people)	600
Action		faintenance support	120
Yes	9)	Pump at least 140 gpm; inject	at least 100 gpm
Yes	10)	Remediate shallow alluvial zon	
Yes	11)	Hold analytical cost to less that only).	•
Yes	12)	No unscheduled overtime (per	day or per week).
Yes	13)	No agency contacts which req	
Yes	14)	Documented training of site pe assignments.	
Yes	15)	Weekly audit of actual perform	nance versus goals.

TABLE 2-3
Treated Water Results Summary

			H		SS		OC		kG		zene	Chilo	r HC's		PCBs	Nepti	halene
Collected	Set No.	(6	-9)	5 PPM		55	PPM	15 PPM		150	PPB	500	PPB	0.69	PPB	300	PPB
		Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg
3-Oct-94	M03A0276	7.36		1.		43.		2.5		2.5		593.		.16		5.	
6-Oct-94	M03A0277	7.44		1.	ľ	43.1		2.5		6.		230.		.16		5.	
10-Oct-94	M03A0278	7.61		1.		18.7		2.5		6.		310.		.16		5.	
13-Oct-94	M03A0279	7.28		1.		20.7		2.5		6.		380.		.16		5.	
3-Nov-94	CF-Out 1103	7.39		6.	1	23.1		2.5		2.5		14.		.16		5.	
14-Nov-94	M03A0282	7.4		9.		23.4		2.5		2.5		145.		.16		5.	
17-Nov-94	M03A0283	7.38		2.		37.3		2.5		2.5		611.		.16		5.	
21-Nov-94	M03A0284	7.27		4.		5.5		2.5		6.		423.		.16		5.	
24-Nov-94	M03A0285	7.26	7.38	4.	3.22	38.8	28.2	2.5	2.5	25.	6.56	1647.	484	.16	.16	5.	5.
28-Nov-94	M03A0286	7.24	7.36	.5	3.17	44.7	28.4	2.5	2.5	12.5	7.67	668.	492	.16	.16	5.	5.
1-Dec-94	M03A0287	7.4	7.36	1.	3.17	34.8	27.4	2.5	2.5	6.	7.67	526.	525	.16	.16	5.	5.
5-Dec-94	M03A0288	7.57	7.35	1.	3.17	28.5	28.5	2.5	2.5	6.	7.67	305.	524	.16	.16	5.	5.
8-Dec-94	M03A0289	7.52	7.38	1.	3.17	40.6	30.7	2.5	2.5	6.	7.67	480.	535	.16	.16	5.	5.
12-Dec-94	M03A0290	7.43	7.39	4.	2.94	33.	31.8	2.5	2.5	6.	8.06	342.	572	.16	.16	5.	5.
15-Dec-94	M03A0291	8.13	7.47	.5	2.	23.	31.8	2.5	2.5	6.	8.44	145.	572	.16	.16	5.	5.
19-Dec-94	M03A0292	7.96	7.53	1.	1.89	29.3	30.9	2.5	2.5	2.5	8.44	75.	512	.16	.16	5.	5.
22-Dec-94	M03A0293	7.91	7.6	4.	1.89	17.8	32.3	2.5	2.5	2.5	8.06	170.	484	.16	.16	5.	5.
26-Dec-94	M03A0294	7.68	7.65	10.	2.56	41.8	32.6	2.5	2.5	6.	5.94	353.	340	.16	.16	5.	5.
29-Dec-94	M03A0295	7.79	7.71	1	2.61	15.4	29.4	2.5	2.5	2.5	4.83	205.	289.	.16	.16	5.	5.
2-Jan-95	M03A0296	7.78	7.75	4.	2.94	12.9	26.9	2.5	2.5	5.	4.72	275.	261	.16	.16	5.	5.
5-Jan-95	M03A0297	7.81	7.78	5.	3.39	19.	25.9	2.5	2.5	6.	4.72	249.	255	.16	.16	5.	5.
9-Jan-95	M03A0298	7.8	7.81	7.	4.06	9.8	22.4	2.5	2.5	2.5	4.33	124.	215	.16	.16	5.	5.
12-Jan-95	M03A0299	7.77	7.85	2.	3.83	9.8	19.9	2.5	2.5	2.5	3.94	200.	200	.16	.16	5.	5.
16-Jan-95	M03A0300	7.61	7.79	4.	4.22	18.3	19.3	2.5	2.5	6.	3.94	393.	227	.16	.16	5.	5.
19-Jan-95	M03A0301	7.44	7.73	2.	4.33	19.8	18.3	2.5	2.5	5.	4.22	454.	269	.16	.16	5.	5.
23-Jan-95	M03A0302	7.82	7.72	9.	4.89	35.5	20.3	2.5	2.5	6.	4.61	192.	272	.16	.16	5.	5.
26-J on-9 5	M03A0303	7.66	7.72	.5	3.83	20.5	17.9	2.5	2.5	6.	4.61	234.	258	.16	.16	5.	5.
30-Jan-95	M03A0304	7.15	7.65	4	4.17	44.3	21.1	2.5	2.5	25.	7.11	2326.	494	.16	.16	5	5.
2-Feb-95	M03A0305	7.28															_

Discharge sample of 17-Oct destroyed in flood.

Chlorinated hydrocarbons value is sum of detected concentrations of 21 volatile chlorinated hydrocarbons on target compound list.

TABLE 2-3 (Continued)
Treated Water Results Summary

		-	48		Ba		Cd		> 7) to		ъ		/n		Hg		Ni		Se	A	19	7	2n
Collected	Set No.	150	PPB_	200	PPB	50	PPB		PPB		PPB		PPB	300	PPB		PPB	148	PPB	20	PP8	51	PPB	162	PPB
		Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg
3-Oct-94	M03A0276	13.		60.		1.3		2.5		3.		1.3		11.		.1		20.		1.3		2.5		9.	
6-Oct-94	M03A0277	14.		73.		1.3		2.5		3.		1.3		9.		.1		2.5		1.3		2.5		3.8	ı
10-Oct-94	M03A0278	11.		58.		1.3		2.5		3.		1.3		1.3		.1		1.3		1.3		2.5		10.	l
	M03A0279	10.		70.		1.3		2.5		2.5		1.3		3.		.1		2.5		1.3		2.5		3.8	ł
	CF-Out 1103	46		32.		.1		5.		5.		.5		21.		.1		7.		1.3		.2		50.	ŧ
	M03A0282	30.		12.		.1		.2		3.		.5		.1		.1		.1		1.2		.2		3.	- 1
	M03A0283	15.		51.		.1		2.		2.		.5	ſ	14.		.1		8.	- 1	1.2		.2	- (6.	l l
	M03A0284	10.		50.] .1		.2		2.		.5	i	6.		.1		4.		1.2		.2		4.	
	M03A0285	16.	18.3	79.	54	.1	.6	1.	2.	2.	2.8	.5	.8	27.	10.3	.1	.1	7.	5.8	1.3	1.2	.2	1.2	1.5	10.1
	M03A0286	6.	17.6	115.	60] .1	.5	.2	1.8	2.	2.7	.5	.8]	18.	11.	.1	.1	7.	4.4	1.3	1.2	.2	.9	6.	9.8
1-Dec-94	M03A0287	11.	17.2	109.	64	.1	.4	.5	1.6	1.	2.5	.5	.7	7.	10.8	.1	.1	10.	5.2	1.3	1.2	.5	.7	4.	9.8
	M03A0288	12.	17.3	121.	71	.1	.2	1.	1.4	3.	2.5	1.	.6	19.	12.8	.1	.1	.9	5.2	1.3	1.2	.5	.5	9.	9.7
	M03A0289	14.	17.8	128.	77] .1	.1	1.	1.2	.3	2.3	.5	.6	3.	12.8	.1	.1	10.	6.	1.3	1.2	.2	.2	3.8	9.7
	M03A0290	.7.	13.4	154.	91	.1	1	7.	1.4	4.	2.1	.5	.6	9.	11.5	.1	-1	13.	6.7	1.3	1.2	.2	.2	5.	4.7
	M03A0291	49.	15.6	92.	100	1.1	-! [Z.	1.6	.7	1.9	.5	.6	3.	11.8	.1	- 1	1.	6.8	5.	1.7	.2	.2	5.	4.9
	M03A0292	16.	15.7	93.	105	-3	-1	1.	1.5	3.	1.8	.5	.6	3.	10.6	.]	-1	2.	6.1	٦.	1.6	.2	.2	4.	4.7
	M03A0293	17.	16.4	130.	113	.1	-1	.2	1.5	1.4	1.7	.5	.6	2.	10.1	.1	-1	2.	5.9	1.3	1.6	.Z	.2	1.5	4.4
	M03A0294	11.	15.9	161.	121	.1	-1	.2	1.4	1.8	1.7	.5	.6	9.	8.1	-1	-: 1	4.	5.5	1.3	1.6	.2	.2	6.	4.9
	M03A0295	<u>18.</u> 9.9	17.2 18.3	114. 172.	121	.2	- '! - 	_!. _	1.5	1:-	1.6	.5	6	18.	6.6 8.6	- ;-		3.	5.1	5.	2.1	-:2	.2	 -	4.7
	M03A0297	9.9	18.7	151.	145	.1	-! }	2.1	1.8	1.6	1.8	.5	.6	57.		. !	.1	ا.	5.2	1.2	2.2	.2	.2	7. 20	5.5 7.3
9-Jan-95	M03A0298	12.	18.7	171.	151	.1	-:1	3.	2. 2.	Z.	1.9 1.9	.5 .5	.6	23.	14.1	- 1	-:	6 .	4.8 5.1	1.2 1.3	2.2	.2 .2	.2	20. 7.	7.
	M03A0299	16.	18.9	143.	152	•	- ; }	.5	1.9	. 3. 2.	2.1		.6	23. 2.	14.4	•	.1	4. 2.	4.2	1.3	2.2	.2	.2	7.	6.9
	M03A0299	12.	19.4	146.	151		.;	.2	1.2	3.	1.9	.5 e	.6 .6	1	13.6	- 1	_i	2. 3.	3.1	1.3	2.2	.2 .2	.2	3. 6.	7.1
	M03A0300	18.	16.	135.	156		:i	.0	1.1	J.	2.1	.5 5	.6	2.	13.4	-:	-: 1	J.	3.4	1.3	1.8	.2 .2	.2	18.	8.5
	M03A0301	12.	15.5	140.	161	.1	_;	.7	'i.'	۷.	2.2	.5 5	.6	2. 3.	13.4	-:	_;	6.	3.9	1.3	1.8	.2	.2	16. 16.	9.8
	M03A0302	16.	15.4	148.	163		-: 1	.2	- ; 1	2.	2.3	.5 5	_ 1	3. 2.	13.4	-:	- ; }	o.	3.9	1.3	1.8	٠.2	.2	12.	11.
	M03A0304	9.		238.	173	1	7	.2	;;]	2.	2.3	.5 E	.6	2. 43.	17.2	• •	ا ; ا	Z. 2	3.8	1.3	1.8	.2	.2	12. 5.	10.9
20-101-33	MUJAUJU4 [J.	10.4	230.	1/3			.4			4.5	.9	<u>.0</u>	3.	17.2	•!		<u>J.</u>	3.0	(.5	1.0	<u></u>	-4	o .	10.5

Discharge sample of 17-Oct destroyed in flood. Metals values in PPB.

MONTHLY PROGRESS REPORT Summary

French Ltd. Project

FLTG, Incorporated

2.2 Problem Areas and Recommended Solutions

Problem

Solution

Maintain high level of safety awareness.

Revise daily safety awareness program.

Daily safety meetings. Supervisory

safety contacts.

On-the-Job safety attention.

Contact all employees at least twice per day on safety issues. Review job details as work proceeds. Stop and challenge

approach.

Hazard detection and response.

Safety inspections. HAZOP's on all jobs.

Lagoon remediation confirmation.

Submit combined Cell E/Cell D/F bottom

sampling data report.

Low flow in some INT pumping and

injection wells.

Vacuum enhanced pumping. Increase injection pressure in some areas. Pressure fracture INT zone in selected

areas.

Slow progress on wetlands excavation.

Adjust work schedules when having wet

weather; flexible field work plan.

Chlorinated hydrocarbons in treated

water.

Adjust and balance flows from selected

wells.

Increase INT zone remediation rate.

Increase pumping and injection rates.

Cell D water handling.

Inject in Cell E subsurface.

2.3 Problems Resolved

None.

MONTHLY PROGRESS REPORT Summary

French Ltd. Project

FLTG, Incorporated

2.4 Deliverables Submitted

December, 1994 monthly report.

2.5 Upcoming/Ongoing Events and Activities

Daily safety meetings and inspections.

Daily safety awareness program.

Emphasis on multiple work assignments.

Emphasis on hazard identification and response.

Attention to safety details.

Respond to HAZOP audits.

Pressure fracturing of west end INT zone.

Daily well pump checks and maintenance.

Aquifer compliance testing in select areas and zones.

Operate S1 and INT wells for expedited in-situ bioremediation.

Ship surplus equipment.

Injection of Cell D water.

Evaluate vegetation in Lagoon area; plant several alternative types.

Operate Data Base Management System.

Total Quality process.

Continue biological activity monitoring in S1 wells and INT wells.

Issue permeability results of INT-11 area containment wall tests.

Developed and issued aquifer compliance sampling plan and compliance criteria modeling plan.

Continue QA/QC data confirmation.

Optimize carbon usage in Water Treatment Plant.

Develop lagoon closure plan.

Submit MCC-1 area remediation report.

Continue wetlands restoration project.

2.6 Key Staffing Changes

None.

2.7 Percent Complete

Research & Development	- 98%
Facilities	- 100%
Slough	- 100%
Subsoil Investigation	-100%
Floodwall	-100%
Lagoon Remediation	-100%
Groundwater	- 75%
Lagoon Dewatering/Fixation	- 100%
Water Treatment	- 72%
Wetlands	- 50%
Demobilization	- 65%
Monitoring	- 58%

MONTHLY PROGRESS REPORT Summary

French Ltd. Project FLTG, Incorporated

2.8 Schedule

All deliverables are on schedule.

Complete active aquifer remediation by January 1, 1996.

2.9 Operations and Monitoring Data

The operations and monitoring data are submitted as parts of Sections 3.0, 4.0, 5.0, and 6.0 of this report, and the supporting data are stored in secure storage at the French project office.

2.10 Credits Accrued/Applied

Status of Credits

	Accrued this period	Accrued to date	Applied this period	Applied to date	Running total
December 1990	34	34	0	0	34
December 1991	0	100	0	0	100
December 1992	0	101	0	2	99
December 1993	0	104	0	4	100
January 1994	0	104	0	4	100
February 1994	0	104	0	4	100
March 1994	0	104	0	4	100
April 1994	0	104	0	4	100
May 1994	0	104	0	4	100
June 1994	0	104	0	4	100
July 1994	5	109	0	4	105
August 1994	0	109	0	4	105
September 1994	0	109	0	4	105
October 1994	0	109	0	4	105
November 1994	0	109	0	4	105
December 1994	0	109	0	4	105
January 1955	0	109	0	4	105

MONTHLY PROGRESS REPORT Summary

French Ltd. Project FLTG, Incorporated

2.11 Community Relations

Maintained 24-hour, call-in Hot Line.

Conducted three site tours for interested parties.

Contacted nearby local residents with update on site activities.

Contacted several Riverdale residents with site status report.

FLTG, Incorporated

3.0 LAGOON

3.1 Summary of Activities

Evaluated test plots of various plants in Cell E; the Cypress and River Birch are stressed by lack of water. Planted a test plot of Oleanders. Evaluating a drip irrigation system.

Injected about 450,000 gallons of "clean" Cell D water in Cell E subsurface.

Operated aerator in Cell D to expedite biomass degradation.

Evaluating various options for gradient control inside the lagoon.

3.2 Problems and Response Action

Problem Recommended Solution Ground cover growth slow in Cell E. Hydroseed a rye grass blend. Water frequently. Evaluate different grass blends. Poor tree growth in Cell E. Evaluate different types of trees. Design an irrigation system. Treat Cell D water. Test subsurface injection. 3.3 **Problems Resolved** None. **Deliverables Submitted** 3.4

None.

MONTHLY PROGRESS REPORT Lagoon Bioremediation

French Ltd. Project FLTG, Incorporated

3.5 Upcoming Events and Activities

Maintain pH, DO, OUR, and nutrient levels in Cell D.

Operate aerator/mixer in Cell D.

Inject Cell D water in Cell E subsurface.

Hydroseed Cell E and Cell F as required.

Maintain vegetation in Cell E.

Plant cottonwood trees in Cell E as a test.

Plant several types of trees in Cell E.

FLTG, Incorporated

4.0 GROUNDWATER AND SUBSOIL REMEDIATION

4.1 Summary of Activities

4.1.1 Operation of Production and Injection Well Systems

Operation of the production and injection wells systems during January 1995 is summarized in Table 4-1. Flows from the production well system are summarized in Table 4-2 and Figure 4-1. Flows into the injection well system are summarized in Table 4-3 and Figure 4-2. Individual well flows are summarized in Table 4-4. S1-1 through S1-16 were shut down in late December to reduce chlorinated hydrocarbon into the GWT plant. S1-1 through S1-9 were converted to injection wells for the disposal of Cell D water and provide a higher water table for the lagoon vegetation.

4.1.2 Operational Monitoring

Operational monitoring associated with the groundwater and subsoil remediation system during January 1995 is summarized in Table 4-5. Results of the annual groundwater sampling event in December are being received from the laboratory at this time.

4.1.3 Data Management and Evaluation

Operational monitoring data from the groundwater and subsoil remediation system for this reporting period were entered into FLTG's database. Tables and figures for this section of the Monthly Progress Report were generated from this database.

4.2 Problems and Response Actions

Groundwater production and injection rates were above target. Nutrient and dissolved oxygen concentrations in injection water were at or close to target levels. No specific response action is planned.

MONTHLY PROGRESS REPORT Groundwater and Subsoil Remediation

French Ltd. Project

FLTG, Incorporated

Table 4-1

Groundwater System Operation - January 1995 Reporting Period: December 27 (29 days) - January 30 (33 days)

Production System

No. of production wells: 109 (S1 unit, 53; INT unit, 56)

No. of operational wells by end of month: 83 (S1 unit, 27; INT unit, 56)

Changes in system since last month: converted S1-1 thru S1-9 to injection wells for Cell

No. of wells off line having reached criteria: 9

S1-1 thru S1-16 off line

No. of wells on pulse pumping schedule: 10 (S1-45 not metered)

No. of wells producing DNAPL: 0

Groundwater produced: 8.3 M gal; 236.1 M gal since startup based on main meter Total production rate: avg. 152 gpm (target 140 gpm); range 121-179 gpm

S1 production rate: avg. 89 gpm; avg. 3.2 gpm per metered well INT production rate: avg. 63 gpm; avg. 1.2 gpm per metered well

Total flow rate apportioned between S1 and INT units based on individual well meter readings; average flows based on 33 days operation

TOC (non-volatile) concentration avg. 38 ppm; range 24 - 66 ppm TOC mass removed: 2,630 lb. (362,385 lb. since startup); 80 lb./day

Injection System

No. of injection wells: 59 (S1 unit, 17; INT unit, 42)

Rainfall during period: not recorded; climate station damaged in October flood

Changes in system since last month: none

Groundwater injected: 7.4 M gal (127.7 M gal since startup) based on main meters

S1 unit injected: 3.8 M gal (71.9 M gal since startup) INT unit injected: 3.6 M gal (60.4 M gal since startup)

Total injection rate: avg. 148 gpm (target 100 gpm); range 120 - 155 gpm

S1 injection rate: avg. 73 gpm; avg. 4.0 gpm per well INT injection rate: avg. 75 gpm; avg. 1.8 gpm per well

Total flow rate apportioned between S1 and INT units based on individual well meter readings; average flows based on 29 days operation

Oxygen added to injection water: 9,787 lb.; 297 lb./day used (input efficiency = 23%) Avg. DO in injection water: S1, 37.7 ppm; INT, 56.9 ppm (target 40 ppm) ⇒ 66.1 lb./day injected

Volume of 9.1% w/w KNO₃ nutrient solution added to INT unit, and S1-North wells: 13.981 gal

Nutrient flow rate: 411 gpd, 0.32% of INT + S1-North inflow rate (target 0.38%) Calculated injection water NO₃ concentration: 41.5 mg/L-N (target 50 mg/L-N)

Note that average monthly flow rates at individual wells (calculated from weekly individual well flow meter readings) are not used directly to determine S1 and INT unit inflows and outflows, but are used to apportion total production and injection flows (calculated from daily main production and injection meter readings) between S1 and INT units. Average flows are based on the 29 day reporting period.

Table 4-2

Daily Groundwater Production and TOC Removal
January 1995

Date	Project Day	T-101 Outflow Rate (FQ-101A)	T-101 Outflow Rate	T-101 Influent Ave. TOC	T-101 Influent TOC Loading
		(gpd)	(gpm)	(mg/L)	(kg/day)
28-Dec	1085	220,500	153	29	24
29-Dec	1086	219,400	152	25	21
30-Dec	1087	227,000	158	26	22
31-Dec	1088	247,100	172	25	23
1-Jan	1089	243,400	169	26	24
2-Jan	1090	245,100	170	24	22
3-Jan	1091	241,200	168	30	27
4-Jan	1092	233,900	162	30	27
5-Jan	1093	230,500	160	45	39
6-Jan	1094	226,400	157	32	27
7-Jan	1 0 95	220,300	153	30	25
8-Jan	1096	216,600	150	27	22
9-Jan	1097	219,800	153	24	20
10-Jan	10 98	226,500	157	29	25
11-Jan	1099	234,000	163	27	24
12-Jan	1100	228,600	159	29	25
13-Jan	1101	215,000	149	27	22
14√Jan	1102	227,200	158	27	23
15-Jan	1103	225,200	156	26	22
16-Jan	1104	211,400	147	31	25
17-Jan	1105	216,300	150	32	26
18 √J an	1106	223,100	155	32	27
19-Jan	1107	226,400	157	31	27
· 20-Jan	1108	201,500	140	33	25
21-Jan	1109	204,000	142	29	22
22-Jan	1110	210,600	146	30	24
23-Jan	1111	212,100	147	38	31
24-Jan	1112	222,400	154	29	24
25-Jan	1113	223,400	155	49	41
26-Jan	1114	244,600	170	44	41
27-Jan	1115	299,700	208	49	56
28-Jan	1116	275,100	191	65	68
29-Jan	1117	258,200	179	65	64
30-Jan	1118	248,000	172	66	62
Month Averag		230,132	160	34	30
Month Total		7,824,500	 	1	1.028

Table 4-3

Daily Injection Flows

January 1995

		INI SO	uu.								
		INT-60/	100	INT I	North						
Date	Project	S1 No	rth	(not INT-	-90/100)	S1 So	uth	Tota	1		
	Day	injection	Wells	Injection		Injection	Wells	Inlecti	on I	Охудел	Nutrients
		FQ90	15	Meter F		Meter FC		Rate		July	
		(gpd)	(gpm)	(gpd)	(gpm)	(gpd)	(gpm)	(gpd)	(gpm)	lbs	Gallons
28-Dec	1085	66,200	46	28,300	20	98,700	69	193,200	134	260	420
29-Dec	1086	68,200	47	28,500	20	92,700	64	189,400	132	0	435
30-Dec	1087	57,500	40	28,900	20	110,700	77	197,100	137	260	454
31-Dec	1088	57,100	40	29,300	20	109,200	76	195,600	136	280	461
1-Jan	1089	54,600	38	28,700	20	104,600	73	187,900	130	280	431
2-Jan	1090	54,700	38	29,000	20	101,700	71	185,400	129	320	439
3-Jan	1091	52,200	36	28,300	20	97,400	68	177,900	124	320	470
4-Jan	1092	53,400	37	27,300	19	92,100	64	172,800	120	296	466
5-Jan	1093	58,800	41	28,000	19	88,800	62	175,600	122	429	409
6-Jan	1094	64,000	44	27,600	19	87,700	61	179,300	125	357	413
7-Jan	1095	63,000	44	27,700	19	87,000	60	177,700	123	300	439
8-Jan	1096	61,100	42	27,400	19	82,300	57	170,800	119	300	435
9-Jan	1097	61,400	43	27,900	19	93,900	65	183,200	127	300	430
10-Jan	1098	59,500	41	26,800	19	110,100	76	196,400	136	300	441
11-Jan	1099	59,500	41	27,800	19	112,600	78	199,900	139	340	448
12-Jan	1100	59,000	41	28,100	20	107,800	75	194,900	135	0	448
13-Jan	1101	55,300	3 8	26,900	19	114,100	79	196,300	136	360	330
14-Jan	1102	60,800	42	27,400	19	115,600	80	203,800	142	320	379
15-Jan	1103	61,700	43	27,500	19	116,500	81	205,700	143	180	394
16-Jan	1104	60,500	42	26,400	18	111,500	77	198,400	138	335	405
17-Jan	1105	63,100	44	27,000	19	115,600	80	205,700	143	400	417
18-Jan	1106	61,700	43	27,000	19	114,100	79	202,800	141	299	383
19-Jan	1107	61,600	43	28,600	20	110,600	77	200,800	139	196	405
20-Jan	1108	61,500	43	28,900	20	106,700	74	197,100	137	160	398
21-Jan	1109	61,700	43	27,600	19	111,300	77	200,600	139	300	307
22-Jan	1110	64,600	45	27,200	19	111,400	77	203,400	141	300	382
23-J an	1111	66,100	46	28,100	20	114,300	79	208,500	145	200	399
24-Jan	1112	65,400	45	27,500	19	113,600	79	206,500	143	400	429
25√ลก	1113	65,300	45	27,600	19	112,700	78	205,600	143	380	416
26-Jan	1114	65,900	46	27,800	19	111,900	78	205,600	143	320	394
27-Jan	1115	65,800	46	27,600	19	109,400	76	202,800	141	275	383
28-Jan	1116	64,700	45	27,800	19	109,500	76	202,000	140	300	338
29-Jan	1117	63,600	44	29,200	20	110,100	76	202,900	141	420	386
30-Jan	1118	62,200	_ 43	29,700	_21	108,900	76	200,800	139	300	397
Month A		61,232	43	27,924	19	105,738	73	194,894	135	288	411
Month T	otal	2,081,900		949,400		3,595,100		6,626,400		9,787	13,981

Table 4-4 jection Flow Rates - January, 1995

Average Production and Injury					
\$1 Production	n Welle (63)	Flov	Figure 200 S1 Rejection	rages for the Wells (17)	
Well ID	gpm	i	Well ID	gpm	
S1-1	OFF		S1-49	1.3	
81-2	OFF		81-60	1.7	
S1-3	OFF		S1- 61	0.2	
81-4	OFF		S1- 5 2	1.3	
81-6	OFF		81-63	1.7	
81-6	OFF		81-64	OFF	
81-7	OFF	ł	81-65	2.5	
S1-£	OFF	1	S1-66	3.8	
S1- S	OFF		S1-67	2.7	
S1-10	OFF		S1-68	OFF	
S1-11	OFF		S1-68	3.3	
51-12	NM	1	S1-65	4.7	
\$1-13	NM	ľ	61-66	4.2	
81-14	OFF	ŀ	81-67	3.3	
81-15	OFF	1	81-68	4.6	
81-16	OFF	ł	81-69	3.4	
S1-17	1.0		<u>\$1-70</u>	3.1	
81-18	1.6	l .	L		
81-18	1.0 PP		Total	41.8	
81-20	2.0	1		ļ	
81-21	6.2	i .	_	1	
81-22	0.8	1	Averege	2.8	
81-23	OFF	I	<u> </u>	<u> </u>	
81-24	2.8 PP				
81-25	2.4	1	Welle \$1-68,		
81-26	6.1		67, 68, 69,		
81-27	1.3		oxygen- and		
81-28	4.5	Į.	amended inje		
81-29	1.8		Subtotal	25.6	
\$1-30	6.0				
81-31	1.6 PP	1	All other S1		
81-32	3.2	4	oxygeneted i	njection	
81-33	OFF	1	water only		
81-34	OFF	1			
\$1-35	OFF	1			
81-36	OFF				
81-37	OFF				
S1-39	7.4	Į.			
81-39	10.2	1			
\$1-40 \$1-41	3.9.00	1			

Subtotal	25.6
All other S1 oxygenated in	eralia receivo

All other S1	wells receive
oxygenated	
water only	

OFF - well inoperative

NM - well running but not metered PP - well in pulse pumping mode

period De	comber 28 -Jan BIT Productio	uary 30 (34 days) n Wells (56)	
7	Well ID	gpm	ſ
1	INT-1 INT-2	1,4 0.6	

Well ID	gpm
INT-1	1,4
NT-2	0.6
INT-3	0.1
INT-4	0.3
	0.5
INT-5	
NT-6	0.3
INT-7	0.2
INT-8	1.2
INT-8	1.1
INT-10	3.4
INT-11	0.8
INT-12	1.6
INT-13	0.4
INT-14	0.2
	0.7
INT-16	
INT-16	0.2
INT-17	0.1
INT-18	0.6
INT-18	0.5
INT-20	0.1
NT-21	0.3
NT-22	0.3
NT-23	0.1
INT-24	0.4
INT-25	0.4
NT-26	0.4
INT-27	1.6
INT-28	0.4
MT-29	3.4
INT-30	1.0
INT-31	1.7
NT-32	0.8
MT-33	0.2
INT-65	1.8
INT-58	0.4
NT-67	1.0
INT-58	3.1
MT-69	0.3
INT-60	1.9
WT-61	1.3
INT-62	0.6
NT-65	NM I
INT-66	0.7
INT-205	1.6
INT-208	0.6
NT-207	0.7
INT-208	3.7
INT-209	0.3
INT-210	3.2
INT-211	NM
INT-212	1.7
NT-213	2.0
	5.2
INT-214	
INT-215	NM
INT-216	0.5
NT-217_	8.0

63.2

1.2

INT	Injection	Welle	(42)

Well ID	gpm
INT-63	0.0
NT-64	3.2
INT-71	2.5
INT-72	0.7
INT-73	0.3
INT-74	1.1
INT-76	0.7
INT-76 INT-77	2.1 3.8
INT-76	3.9
INT-79	0.5
INT-BO	0.5
INT-81	4.3
INT-82	0.7
INT-83	0.4
INT-84	0.8
INT-85	0.8
INT-ES	1.0
WT-87	0.6
NT-88	1.2
NT-89	0.8
WT-BO	4.1
WT-81	1.7
INT-82	2.6
INT-83	0.8
INT-84	0.8
NT-85	1.1
NT-85	1.8
INT-87	0.6
MT-88	0.9
NT-93	2.6
INT-100	1.0
INT-201 INT-202	0.6
NT-203	0.8
NT-204	1.5
WT-218	1.1
INT-218	1.0
INT-220	1.5
INT-221	0.6
INT-222	2.5
INT-223	0.7
Tetal	58. 5
Average	1.4

All INT injection wells bns -negyze sviscer nutrient-emended injection water

3.8 PP OFF

OFF 3.0 PP NM

11.6 PP 0.8 PP 1.7 PP

0.3

3.5

1.5

0.8 88.8

3.3

Note: total and average flow rates for S1 and INT units are corrected (per main flow meter readings) for use in Table 4-1.

\$1-37 \$1-38 81-39 \$1-40 \$1-41 \$1-42

81-43 81-44 81-45

81-48

81-47 51-48 81-80

\$1-62

81-63

51-64

FLTG, Incorporated

Table 4-5
Operational Monitoring - January 1995

Activity	Frequency	Purpose
Check production and injection wells for pump, meter, and level control opera- tion, injection pressure, gas buildup, and flow meter readings.	Weekly	Identify and respond to individual well problems; maintain operating efficiency.
Read groundwater treatment plant in- flow and outflow meters; nutrient injec- tion flow meters; oxygen flows, pressure and temperature; and injection header back pressure.	2x daily	Identify and respond to treatment plant problems; control nutrient and injection flow rates.
Measure T-101 influent TOC.	2x daily	Track TOC removal.
Measure dissolved oxygen at 11 representative S1 and INT injection wells	Weekly	Control oxygen injection.
Sample T-101 influent for VOC, TOC, and nutrient analysis, (1) from all operating production wells, and (2) from all wells located outside the floodwall.	Monthly	Develop chemical mass balance.
Sample groundwater at 109 monitoring wells; measure water levels before sampling; perform on-site TOC and DO analysis.	Annual/ Monthly	Annual plume definition; track TOC removal; monitor development of aerobic conditions.

Figure 4-1
Production Flows

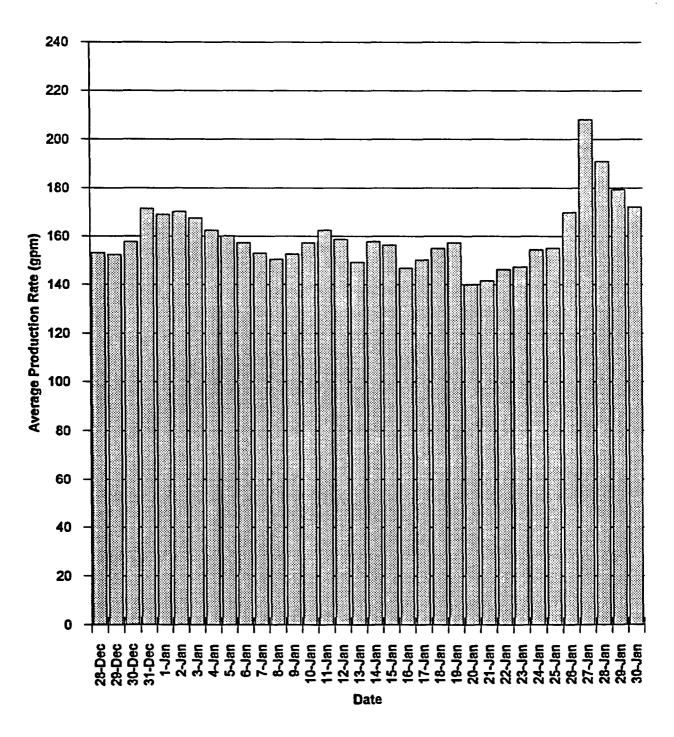
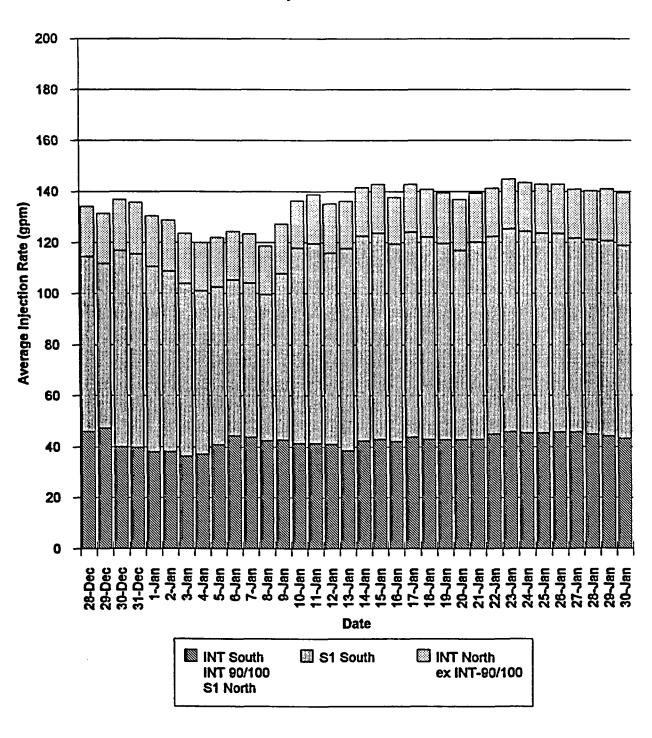
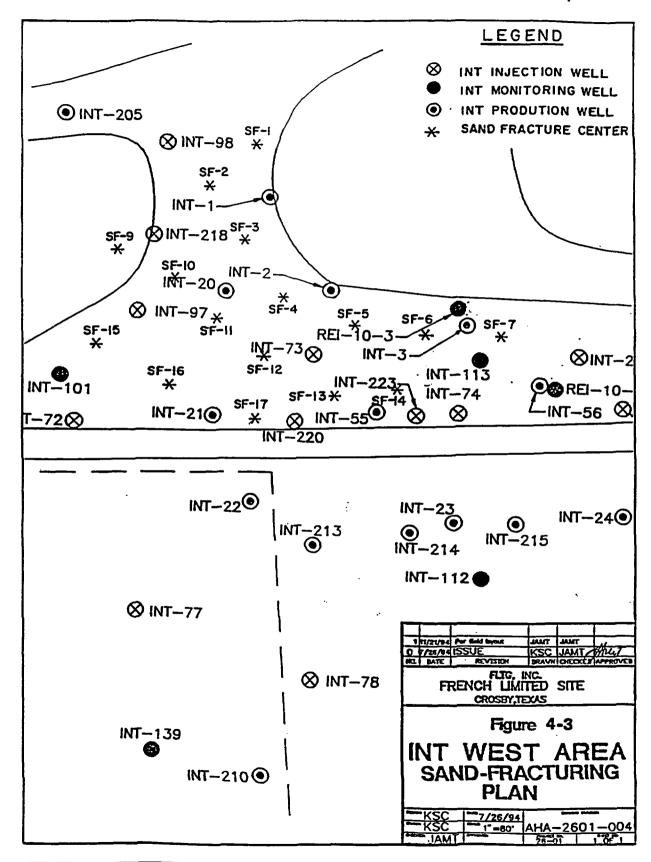




Figure 4-2
Injection Flows

MONTHLY PROGRESS REPORT Groundwater and Subsoil Remediation

French Ltd. Project

4.3 Pending Issues

4.3.1 DNAPL Response

During January, work continued on evaluating the INT-11 DNAPL cutoff wall permeability certification testing results. Responses are being developed to the CH2M Hill comments on the DNAPL FS report.

4.3.2 S1 Unit Pulse Pumping

Pulse pumping continued at wells S1-19, -24, -31, -40, -41, -44, -45, -46, -47, -48, and -60.

4.3.3 Phreatophytes

Cypress and river birch are not thriving; willow and cottonwood have been ordered. Planting date is scheduled for February 8 and 9.

4.4 Operational Refinements

A program of hydrofracturing with sand and nutrient injection started on January 3, 1995. Sand fracturing will be performed at 16 centers in the close west end area (see Figure 4-3). The purpose of this program is to accelerate nutrient delivery and contaminant attenuation in this part of the INT unit by increasing permeability. At the end of this reporting period, 10 fractures have been completed with positive results to-date.

4.5 Data Summary and Discussion

4.5.1 Groundwater Production and Injection

Groundwater production and injection rates were above target.

4.5.1 Groundwater Levels and Flow Directions

The current extent of contaminated groundwater is contained within the S1 and INT extraction system capture zones.

Water levels were measured at monitoring wells on January 5, 1995. Contour maps will be presented on a quarterly basis in this operation year; the contour maps will be in the March, June, September, and December monthly reports.

French Ltd. Project

FLTG, Incorporated

4.5.3 TOC in shallow groundwater

TOC analyses on production wells were completed the first week in January. The analyses are in Table 4-6. The overall average TOC level continues to drop. Contour maps will be presented quarterly for this reporting year.

4.5.4 In-Situ Bioremediation

No major changes in in-situ bioremediation system operation were made in January. The emphasis continues to be to maximize delivery of oxygen and nutrients to the INT system.

4.6 Schedule

In February: 45 phreatophytes will be planted in Cells E and F. Tree varieties are enclosed as Attachment A.

Table 4-6

					HIS		PRODU		NTRATK WELLS	NS								
Well	Baseline	Maximum	Max	Avg	Min	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Jan
Ю	Nov-Dec 91	Feb-Dec 92	1993	1993	1993	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1995
<u> </u>	(ppm) 290	(ppm)	(ppm)	(ppm)	(ppm) 390	(ppm) 1.025	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
S1-1	190	475 796	910 1,204	634 832	460	1,025	1,150 909	1,317	941 982	971 1,120	1,360 1,139	970	850 1,130	1,133 1,251	1,080	1,215 NS	NS NS	1,592 1,044
S1-3	370	1,071	1,610	862	384	1,090	1,120	1.037	793	783	755	760	670	566	692	750	NS	624
S1-4	47	866	1,044	786	560	848	1,300	1.025	676	669	668	420	552	620	552	576	NS	582
S1-5	51	646	950	714	548	1,079	624	1,151	655	583	473	NS	NS	NS	NS	NS	NS	504
S1-6	51	800	1,084	816	482	1,202	1,340	1,315	832	878	892	920	860	928	860	NS	NS	774
S1-7	200	787	1,084	879	710	NS	1,290	1,327	857	843	786	780	800	660	752	NS	NS I	708
S1-8	64	927	1,072	769	465	1,118	1,290	1,516	921	931	1,110	880	800	935	800	909	NS	708
S1-9	77	506	1,530	830	225	1,809	2,020	2,085	1,500	337	1,589	1,420	1,750	567	1,480	NS	NS	1,52
S1-10 S1-11	46 120	214 281	2,105 1,848	1,381 1,193	147 270	2,251 2,004	2,610 2,210	2,540 NS	1,716 1,500	1,980	1,800 1,751	1,810	1,770 1,639	567 2,510	1,640	2,001	NS NS	2,20
S1-12	140	1.002	2.260	1.200	585	2,313	2,390	2,129	1,780	1,609 2,056	1,445	1,810 2,410	2,210	2,355	1,548 NS	1,825	NS	2,12 1,85
S1-13	520	894	760	598	404	771	930	990	698	836	722	850	790	1.077	1.032	960	NS	678
S1-14	590	1,730	2,304	1,214	626	1,502	1,077	1,616	1,350	1.293	1,443	1,400	1.550	1,440	1,415	1.000	NS	1,39
S1-15	5,300	4,910	3,696	2,374	336	3,373	2,756	2,778	3,030	2,484	2,280	3,490	2,080	2,583	2,600	1,450	NS	2,59
S1-16	000,8	8,900	3,122	1,651	180	NS	2,056	2,732	2,256	NS	718	NS	NS '	NS	NS	1,744	NS	1,05
S1-17	6,800	5,550	1,106	750	405	627	388	344	314	266	180	230	102	141	90	92	NS	73
S1-18	2,200	2,043	196	112	52	90	101	44	86	39	34	36	34	49	36	45	NS	24
S1-19	20	914	220	110	53	26	37	33	60	25	28	28	25	39	18	22	NS	14
S1-20 S1-21	120 65	1,360 418	192 1,020	126 134	60 23	25 113	95 48	141	57 29	68 18	50 8	19	68 19	60 42	30 8	43	NS NS	21 6
S1-21	290	1,080	1,010	123	8	12	6	4	28	14	19	16	44	64	25	31	NS NS	30
S1-23	350	234	1,315	137	7	24	14	27	29	13	21	NS	NS	29	10	20	NS	13
\$1-24	250	240	200	52	16	25	16	16	39	16	18	19	19	42	13	17	NS	13
81-25	550	660	91	35	11	26	16	16	28	14	15	15	15	33	13	23	NS	13
\$1-26	540	575	84	34	14	25	25	22	39	15	18	17	17	49	11	16	NS	. 14
S1-27	220	219	400	119	52	51	62	60	52	45	42	41	35	88	NS	128	NS	25
S1-28	370	520	380	64	11	275	29	12	23	14	15	17	15	21	41	18	NS	14
S1-29 S1-30	670 370	496 711	182	47	16	50	62 60	23 78	28	19	20	23	21	33	20	20	NS	16
S1-31	14	712	604 70	113	27 15	51 0	57	29	38 60	28 15	31 17	32 20	26 17	86 29	42 16	28 25	NS NS	20 12
S1-32	18	347	910	185	30	100	132	85	82	48	49	46	45	73	42	40	NS	35
\$1-33	10	30	55	30	12	101	99	16	25	NS	NS	NS	15	567	12	NS	NS	NS
S1-34	11	50	94	50	24	79	90	75	24	NS	13	17	16	18	17	NS	NS	NS
S1-35	24	154	95	68	22	25	43	45	64	44	43	19	86	37	46	NS	NS	28
\$1-3 6	200	162	106	56	10	60	49	44	45	NS	27	30	43	39	NS	NS	NS	NS
S1-37 S1-38	13 59	71 73	180	44	12	5 0 NS	52 1.540	55	57	NS	NS	23	35	36	34 NS	NS	NS NS	NS
S1-38 S1-39	290	414	52 96	21 35	1 1	NS 15	25	6 22	17	NS 14	11	NS 14	24 17	22 17	10	NS NS	NS NS	NS 10
S1-40	150	210	268	70	25	38	25	33	25	18	15	16	14	17	13	18	NS NS	18
S1-41	170	116	84	31	14	1 7	48	12	17	12	111	1 11	12	16	NS	NS	NS	10
51-42	88	103	35	17	5	a	11	37	13	NS	NS	NS	21	22	NS	NS	NS	NS
\$1-43	4	36	50	24	6	1	21	NS	19	NS	NS	5	5	14	NS	NS	NS	N≾
\$1-44	280	204	45	25	9	25	19	44	33	23	21	23	21	28	53	NS	NS	9
\$1-45	4,400	588	174	51	14	37	20	30	33	26	NS	17	28	24	16	NS	NS	10
\$1-46	480	462	76	18	4	1 1	11	10	21	15	NS	34	21	24	6	10	NS	1 4
\$1-47 \$1.49	1,200	1,390	155	79	25	150	72	61	60	42	NS	25	46	31	20	NS	NS	24
\$1-48 \$1-60	1,200 48	1,505	133	52 28	15	50 25	34	31 15	31 16	21 10	NS NS	35	37	22 17	22	NS NS	NS NS	15
\$1-60 \$1-61	NS	91 NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS 758	10 744	26 1,028	366	201	152	NS NS	7
\$1-62	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	125	42	26	27	20	18	NS	20
81-63	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	264	256	193	241	149	150	NS	15
\$1-64	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	512	102	63	66	53	55	NS	1 4

MONTHLY PROGRESS REPORT Groundwater and Subsoil Remediation

French Ltd. Project

Table 4-7

lable 4-7																		
					His			CONCE		ons								
Well	Baseline	Maximum	Max 1993	Avg 1993	Min 1993	Jan	Feb 1994	Mar	Apr	May	June 1994	July 1994	Aug 1994	Sep	Oct	Nov	Dec 1994	Jen 1995
1D	Nov-Dec 91 (ppm)	Feb-Dec 92 (ppm)	(bbw)	(ppm)	(ppm)	1994 (ppm)	(ppm)	1994 (ppm)	1994 (ppm)	1994 (ppm)	(ppm)	(ppm)	(ppm)	1994 (ppm)	1994 (ppm)	1994 (ppm)	(ppm)	(bbus)
INT-1	3,600	3,600	1,584	1,029	460	1,050	718	800	608	507	374	375	290	320	252	253	NS	204
INT-2	1,800	1,120	900	414	215	174	230	290	301	343	339	602	288	281	426	214	NS	91
INT-3 INT-4	5,200 610	2,030 928	1,935 79 3	1,389 526	218 330	2,080 5 87	1,926 1,300	1,188 1,300	1,362 990	1,058 992	1,260 541	1,548 594	1,092 542	932 430	972 398	1,550 NS	NS NS	1,016 198
INT-5	960	1,689	536	356	190	263	248	205	159	94	101	92	70	103	390 85	90	NS NS	76
INT-6	280	973	1,140	556	90	720	451	510	312	210	200	135	180	195	105	100	NS	76
INT-7	100	245	1,100	308	24	99	74	99	104	117	140	147	129	101	109	38	NS	120
NT-8 NT-9	75 800	666 1,413	196 358	90 178	24 101	112 188	103 174	84 142	87 105	62 78	60 77	5 6	53 69	64 70	46 6 5	43 NS	NS NS	47 68
INT-10	1,900	1,328	186	109	57	100	93	112	96	65	62	NS	52	82	5 6	135	NS	45
INT-11	590	1,816	171	117	80	175	186	NS	85	11	44	NS	NS	113	44	31	NS	31
INT-12	3,300	1,820	1,255	399	141	364	239	106	123	6 6	105	65	48	74	26	23	NS	32
INT-13 INT-14	590 24	924 1,026	251 492	122 266	40 58	99 226	67 154	63 112	50 162	47 62	89 NS	50 61	28 84	50 119	31 59	23 53	NS NS	34 39
NT-15	19	1,760	38	200	9	12	34	20	19	14	19	13	30	47	13	18	NS	17
INT-16	2,000	2,230	147	28	6	13	12	15	13	9	11	7	10	68	5	9	NS	6
INT-17	7	252	184	81	39	152	25	13	15	12	NS	9	8	19	6	14	NS	8
INT-18 INT-19	1,400	129 1,800	270 332	183 158	139 52	225 112	230 76	162 55	137 55	76 43	73 36	64 NS	51 NS	57 38	38 39	29 39	NS NS	24 56
NT-20	3,500	3,742	3,141	2,123	901	2,147	1,960	2,525	1,844	2,112	1,922	1,930	1,810	1,182	1,500	NS	NS	1,480
INT-21	29	301	325	260	130	362	327	240	217	214	214	356	204	190	126	NS	NS	204
NT-22	8	68	76	45	18	43	58	55	32	41	44	85	101	95	74	NS	NS	117
INT-23 INT-24	16 240	74 434	112 472	73 293	43 38	48 202	53 174	40 136	32 111	26 85	5 0	241 95	153 84	112 84	68 61	NS 65	NS NS	35 58
INT-25	36	376	272	169	58	75	60	65	62	32	24	30	25	29	21	NS	NS	20
INT-26	120	970	837	430	143	203	173	152	131	113	38	111	108	122	112	123	NS	110
INT-27	180	324	268	196	107	75	109	116	104	82	85	NS	83	79	75	80	NS	65
INT-28	630 1,100	648 1,120	288 450	200	57 74	187 162	130	48 104	51 58	53 78	34 65	38 83	32 59	37 76	22 79	23 58	NS .	22 35
NT-30	1,400	606	294	129	43	112	60	32	28	22	32	26	31	45	38	24	NS	27
INT-31	70	540	120	62	29	12	67	52	41	32	25	30	30	82	20	30	NS	20
INT-32	880	470	208	119	48	124	26	16	29	20	24	23	25	22	11	11	NS	12
INT-33	120	1,710	1,620	910	25	1,374	1,006	255	109	61	47	38	29	20	12	17	NS	10
INT-65 INT-66	NS NS	NS NS	6 68	53 668	668	235 901	113 824	115 925	76 153	147 515	98 435	141 350	109 314	122	76 213	146	NS NS	65 132
NT-57	NS	NS	28	28	28	12	29	40	24	58	61	74	40	66	64	51	NS	75
INT-58	NS	NS	102	102	102	10	94	76	67	54	46	44	45	34	32	33	NS	28
INT-59	NS	NS	121	121	121	100	104	115	81	50	77	45	112	79	72	49	NS	50
INT-60	NS	NS	172	172	172	201	169	195	151	124	118	114	111	110	91	85	NS	86 21
INT-61 INT-62	NS NS	NS NS	56 52	56 52	56 52	79 75	80 197	95	65	59 36	48 38	43 30	38 56	39 35	28	40 43	NS NS	31 29
INT-65	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	65	116	61	66	54	61	NS	51
INT-66	NS	NS	114	114	114	125	132	175	161	97	113	66	83	120	128	94	NS	94
INT-205	1	NS	31	31	31	39	132	120	50	34	39	40	36	61	39	39	NS	34
INT-206	1	NS	24	24	24	218	48	44	45	38	53	75	110	107	87	86	NS	68
INT-207		NS NS	66 27	66 27	66 27	101	71 53	56 20	58 24	38 16	52 38	19	29	45 22	54 16	16	NS NS	74
INT-200		NS	35	35	35	40	62	52	51	50	43	46	50	37	20	19	NS	13
INT-210		NS	36	36	36	42	48	24	29	25	22	72	32	27	22	28	NS	23
INT-211		NS	109	109	109	151	127	88	89	5 5	57	53	76	43	41	46	NS	29
INT-212		NS	NS	NS	NS	NS	NS	NS	NS	NS	36	24	22	27	29	38	NS	41
INT-213 INT-214		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	36 35	135 68	45 47	83 46	32	70	NS NS	91 22
INT-215		NS	NS	NS	NS	NS	NS	NS	NS	NS	170	174	94	82	46	82	NS	56
INT-216	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	22	21	24	34	22	28	NS	26
INT-217		NS	NS	NS	NS	NS	NS	NS	NS	NS	62	61	_ 81	_66	59	61	NS	60
NS = No	t Sampled																, ,,	

Table 4-8

w	ater Level M	easurements	
l	1/2/95 to	1/4/95	
Well	DTW	TOC	WL.
ID ID	(ft)	(ft MSL)	(ft MSL)
ERT-01	21.89	18.65	-3.24
ERT-02	40.70	18.43	NM
ERT-03	18.70	15.53	-3.17
ERT-07 ERT-08	18.74 19.04	17.96 18.34	-0.78 -0.70
ERT-09	21.50	18.52	-2.98
ERT-10	21.50	18.54	NM
ERT-20		11.66	NM
ERT-21		13.63	NM
ERT-22		11.66	NM
ERT-23	5.84	15.85	10.01
ERT-24	5.07	12.98	7.91
ERT-25	4.91	15.18	10.27
ERT-26	5.27	15.77	10.50
ERT-27	3.66	18.67	15.01
ERT-28	11.11	22.11	11.00
ERT-29	10.07	21.66	11.59
ERT-30	13.91	19.64	5.73
ERT-33	4.9 8	15.29	10.31
ERT-34	5.20	15.56	10.36
FLTG-01	2.25	9.84	7.59
FLTG-02	0.40	9.51	9.11
FLTG-03	3,00	10.96	7.9 6
FLTG-04	2.38	11.28	8.92
FLTG-05	2.53	11.80	9.27
FLTG-06	2.72	12.02	9.30
FLTG-07	8.06	13.31	7.25
FLTG-08		13.10	NM
FLTG-09	4.34	14.80	10.46
FLTG-10	4.35	14.87	10.52
FLTG-11	4.40	15.36	10.96
FLTG-12	4.40 0.24	15.28	10.88
FLTG-13 FLTG-14	1.13	12.02 11.51	11.78 10.38
FLTG-15	3.45	12.53	9.08
INT-059-P1	12.87	11.64	-1.23
INT-059-P2	'=~'	11.68	NM
INT-059-P4	8.65	11.67	3.02
INT-060-P1	22,06	12.02	-10.04
INT-060-P2	<u></u>	11.99	NM
INT-060-P4	8.25	12.03	3.78
INT-101	11.55	13.12	1.57
INT-102	10.80	14.92	4.12
INT-103	0.83	1 1.8 6	11.03
INT-104	2.49	13.43	10.94
INT-105	4.78	12.64	7.86
INT-106	5.77	11.59	5.82
INT-107	6.80	14.94	8.14
INT-108	12,36	13.50	1.14
INT-109	8.93	11.84	2.91
INT-110	11.49	12.81	1.32
INT-111	10.72	11.60	88.0
INT-112	11.38	12.75	1.37
INT-113	13.00	15.71	2.71

Table 4-8 (Continued)

f	Water Level A	leasurement	5
1	1/2/95 t	o 1/4/95	
Well	DTW	TOC	WL
ID	(ft)	(ft MSL)	(ft MSL)
INT-114	11.23	11.55	0.32
INT-115	6.43	15.16	8.73
INT-116	10.76	14.81	4.05
INT-117	18.75	20.96	2.21
INT-118	8.59	19.53	10.94
INT-119	8.70	15.45	6.75
INT-120	00	15.05	NM
INT-121		15.25	NM
INT-122		15.25	NM
		1	NM.
INT-123		15.05	
INT-124		14.40	NM
INT-125		13.67	NM
INT-126		11.72	NM
INT-127	Į.	11.12	NM
INT-128		11.15	NM
INT-129	ŀ	5.14	NM
INT-130		11.21	NM
INT-131		5.83	NM
INT-132	19.31	14.96	-4.35
INT-133	20.58	16.89	-3.69
INT-134	25.32	16.79	-8.53
INT-135	30.58	17.99	-12.59
INT-136	19.09	14.40	-4.69
INT-137	27.05	19.25	-7.80
INT-138	_	20.18	-3,46
INT-139		19.97	-3,81
INT-140		13.79	-5.93
INT-141		14.98	-5.85
INT-142		17.53	-6.91
INT-143		15.32	8.83
		16.06	-1.98
INT-144			
INT-145		16.55	-2.19
INT-146	1	16.54	-2.18
P-6	12.60	15.11	2.51
P-6	14.31	18.34	4.03
REI-03-2		12.47	NM
REI-03-3		13.14	NM
REI-03-4	١ ١	13.99	NM
REI-7		13.38	NM
REI-10-3	2	14.15	NM
REI-10-	3 12.28	15.12	2.84
REI-11		11.78	NM
REI-12-	2 5.16	12.27	7.11
REI-3-1		13.44	NM
S1-050-F	1 8.56	12.75	4.19
S1-050-F	2	12.05	NM
S1-050-F	3 8.48	12.83	4.35
\$1-051-	-	12.68	3.43
\$1-051-		12.91	NM
S1-051-F	-	12.20	3.64
S1-101	-	12.77	9.36
S1-101	1	15.64	2.97
		1	2.11
S1-103		15.04	7.84
S1-104	5.14	12.98	1.04

Table 4-8 (Continued)

г — W	Water Level Measurements								
•	1/2/95 to		'						
Well	DTW	TOC	WL						
10.	(ft)	(ft MSL)	(R MSL)						
S1-105	1.92	11.89	9.97						
S1-106	5.88	13.97	8.09						
S1-107	4.65	14,44	9.79						
S1-108	4.27	12.58	8.31						
S1-109	5.56	12.51	6.95						
S1-110	8.24	11.77	3.53						
S1-111	3.69	12.39	8.70						
S1-112	6.86	12.53	5.67						
S1-113	2.99	12.12	9.13						
S1-114	6.79	15.02	8.23						
S1-115	4.34	13.27	8.93						
S1-116	6.08	15.37	9.29						
S1-117	11.42	21.48	10.06						
S1-118		18.99	NM						
S1-119		5.34	NM						
S1-120		6.21	NM						
S1-121		6.13	NM						
S1-122		3.59	NM						
S1-123		10.70	NM						
S1-124		5.58	MM						
S1-125		5.24	NM						
S1-126		5.49	NM						
S1-127		4.88	NM						
S1-128		5.12	NM						
S1-129		5.44	NM						
S1-130		5.85	NM						
S1-131	1	5.47	NM						
S1-132	į.	4.49	NM						
S1-133	:	5.26	NM						
S1-134		5.9 8	NM						
S1-135	5.45	18.02	12.57						
S1-137	6.87	19.10	12.23						
S2-101	72.22	16.53	-55.69						
SG-1		9.98	NM						
\$G-2 (Cell D)	l	(Į.						
SG-3		1.27	NM						
SG-4 (E Pond)	1								
SG-5	9.58	5.33	-4.25						
W-3	20.23	18.53	-1.70						
W-4	20.94	18.51	-2.43						
W-6	22.06	18.51	-3.55						
W-7	20.04	16.34	-1.70						

TOC (top of casing) based on latest survey data. Survey records are in AHA database.

Table 4-9

Dissolved Oxygen at Production Wells

Well	7/1/94	7/30-8/3/94	9/1/94	10/1/94	11/23/94	1/1/95
S1-1	0.6	0.5	2.1	2.2	8.0	1.6
S1-2	0.5	0.2	1.7	1.4	1.6	1.1
S1-3	0.8	0.2	1.8	1.2	1.0	1.1
S1-4	0.4	0.2	2.0	1.4	0.8	0.9
S1-5	NM	NM	NM	NM	NM	1.6
S1-6	0.3	0.1	1.6	3.6	. NM	0.8
S1-7	0.5	0.2	1.3	1.8	NM	1.2
S1-8	0.5	0.2	1.1	1.2	0.7	0.8
S1-9	0.7	0.1	0.8	5.0	NM	1.5
\$1-10	0.4	0.1	0.6	2.6	0.5	1.0
S1-11	0.7	2.1	1.1	1.4	0.9	1.4
\$1-12	0.8	0.5	1.1	NM	1.3	1.5
\$1-13	0.7	0.8	1.7	5.2	1.3	1.5
S1-14	0.7	0.8	1.7	3.0	0.4	0.8
S1-15	0.6	0.1		1		
			1.4	1.4	0.7	0.7
S1-16	NM	NM	NM	NM	1.2	2.9
S1-17	8.0	1.5	1.2	2.4	8.0	1.4
\$1-18	2.0	1.5	2.4	2.2	1.4	2.2
S1-19	4.9	1.4	3.4	7.0	3.9	6.6
\$1-20	5.8	1.5	1.6	7.4	1.7	3.2
S1-21	10.4	12.2	15+	15+	15+	15+
81-22	15+	2.4	1.5	2.3	0.7	1.6
S1-23	NM	NM	1.9	13.2	1.5	4.8
S1-24	10.5	8.9	0.9	2.0	2.6	1.8
S1-25	1.6	0.6	8.0	3.2	8.0	1.4
S1-26	2.6	3.2	2.2	3.0	0.7	1.1
S1-27	1.6	1.0	1.4	NM	1.9	2.0
S1-28	2.4	0.9	1.2	1.8	1.2	1.7
S1-29	1.6	1.0	1.9	2.6	2.2	4.4
S1-30	1.0	8.0	1.5	2.2	1.1	4.2
S1-31	1.5	1.0	1.8	4.2	1.6	1.2
\$1-32	1.2	0.3	1.4	8.0	1.5	1.6
S1-33	NM	1.7	1.4	NM	NM	NM
S1-34	1.0	1.8	1.2	1.6	NM	NM
S1-35	0.7	0.5	1.7	1.8	NM	1.5
S1-36	1.0	1.6	0.9	NM	NM	NM
81-37	2.0	1.4	1.3	1.4	NM	NM
\$1-38	NM	12.0	15+	NM	NM	NM
S1-39	1.3	0.5	1.3	2.6	2.9	3.2
81-40	0.7	0.5	2.2	1.6	1.0	2.0
81-41	1.8	1.0	1.0	NM	1.0	1.4
S1-42		6.9	14.0	NM	NM	NM
S1-43	1.6	2.0	2.2	NM	NM	NM
81-44	10.0	14.2	1.8	2.0	6.0	1.8
\$1-45	5.2	6.4	2.9	2.0	2.3	5.1
81-46	1	15+	13.5	15+	15+	15+
\$1-47		1.9	9.6	14.8	8.7	5.4
S1-48		1.2	5.3	5.7	4.2	5.0
\$1-60		5.7	6.1	7.0	4.4	5.6
S1-61		0.8	1.1	2.0	0.8	1.2
\$1-62		1.1	1.4	2.9	2.8	12.6
S1-63	E .	2.2	2.2	1.9	0.9	4.0
S1-64		4.0	2.4	4.6	1.8	4.1
01-04		7.0		1 4.0	1.6	

Table 4-9 (Continued)

Dissolved Oxygen at Production Wells

	Dissolved Oxygen at Production Wells									
Well	7/1/94	7/30-8/3/94	9/1/94	10/1/94	11/23/94	1/1/95				
INT-1	1.0	8.0	1.1	1.6	1.4	3.0				
INT-2	1.7	0.2	1.5	1.4	0.8	0.8				
INT-3	8.0	0.2	1.0	1.4	1.0	1.4				
INT-4	0.5	0.1	0.9	1.6	1.1	1.2				
INT-5	1.8	1.1	2.3	1.9	1.1	1.0				
INT-6	1.2	0.4	0.7	1.6	1.3	1.4				
INT-7	1.3	0.3	1.5	2.6	1.0	0.6				
INT-8	1.5	0.3	1.8	3.0	1.0	1.9				
INT-8	1.8	0.5	1.2	1.8	NM	1.4				
INT-10	NM	2.6	1.9	3.6	1.4	1.7				
INT-11	NM	NM	1.1	4.4	2.2	3.4				
INT-12	13.8	15+	2.2	18.0	13.8	13.8				
INT-13	5.4	4.0	0.9	5.8	7.8	1.6				
INT-14	1.2	1.0	1.8	2.6	1.7	1.7				
INT-15	1.8	1.0	1.4	2.6	1.6	2.0				
INT-16	2.5	1.6	2.1	2.0	3.0	1.8				
INT-17	2.0	2.6	2.9	3.2	2.2	2.6				
INT-18	1.2	1.2	1.8	1.8	1.2	1.5				
INT-19	NM	NM	2.4	1.9	1.4	1.1				
INT-20	1.2	0.1	1.3	2.0	0.9	1.2				
INT-21	2.0	2.0	1.7	2.4	2.6	3.0				
INT-22	2.0	0.6	0.8	1.6	1.0	1.1				
INT-23	1.2	0.4	1.1	1.4	2.4	2.3				
INT-24	1.2	0.8	1.8	2.6	2.0	2.6				
INT-25	6.0	12.5	12.5	14.2	15+	10.2				
INT-26	2.8	0.8	1.4	3.0	1.6	2.3				
INT-27	NM	1.1	1.6	1.8	1.2	1.4				
INT-28	2.4	3.3	5.2	6.2	7.4	4.6				
INT-29	5.6	3.8	5.2	4.8	4.0	4.4				
INT-30	10.2	8.4	9.5	7.2	8.4	1.8				
INT-31	5.7	6.5	1.4	7.0	4.1	5.3				
INT-32	15+	15+	15+	15+	15+	15+				
INT-32	2.0	2.1	2.5	2.8	1.9	2.5				
INT-55	4.1	1.6	3.4	2.8	2.0	2.2				
INT-56	1.0	3.0	1.2	1.8	1.5	1.6				
INT-57	1.1	7.1	6.2	3.2	2.8	3.1				
INT-58	1.4	1.1	1.9	2.6	1.9	1.6				
INT-59	2.4	2.3	2.2	2.4	2.4	3.0				
INT-60	1.0	1.1	1.8	4.0	1.9	2.4				
INT-61	2.0	2.2	2.7	3.8	1.8	2.6				
INT-62	4.0	2.0	1.0	4.4	2.1	2.6				
INT-65	1.6	1.1		1.8	1.0	1.2				
INT-66		2.6	2.1	1.8	1.0	3.1				
INT-205	2.1 1.4	0.3	2.2 1.8	3.4	1.8	2.8				
				1.8	2.4	1.2				
INT-206	1.6	0.4	1.1			1.2				
INT-207	1.0	8.0	4.6	2.2	1.0	11.8				
INT-208	1.6	8.0	1.3	3.2	3.4					
INT-209	1.8	14.5	2.8	9.0	15+	14.8				
INT-210	15+	15+	15+	15+	15+	15+				
INT-211	1.2	9.1	1.9	3.0	2.0	2.0				
INT-212	4.1	1.5	1.6	3.0	2.2	1.8				
INT-213	8.0	0.7	1.2	2.0	1.2	2.0				
INT-214	2.8	1.3	3.8	4.8	4.6	2.8				

MONTHLY PROGRESS REPORT Groundwater and Subsoil Remediation

French Ltd. Project FLTG, Incorporated

Table 4-9 (Continued)

Dissolved Oxygen at Production Wells

Well	7/1/94	7/30-8/3/94	9/1/94	10/1/94	11/23/94	1/1/95
INT-215	3.4	4.0	5.2	3.8	3.6	3.0
INT-216	2.9	15+	3.4	4.4	4.2	2.7
INT-217	1.1	1.0	1.6	1.4	1.2	1.8

	Table 4-10										
			Di	ssolved	Oxygen a	t Monito	ring Well:	5			
	11/22/93	2/3/94	3/4/94	4/5/94	5/2/94	6/1/94	7/3/94	7/31/94	9/2/94	10/1/94	12/15/94
ERT-1	NM	1.2	1.0	0.8	1.4	0.8	0.8	0.2	0.2	1.1	1.2
ERT-3	0.8	1.0	1.0	8.0	1.2	1.0	1.2	0.4	0.2	0.7	1.8
ERT-7	1	1.2	1.0	1.1	0.6	0.8	0.8	0.2	0.2	1.5	NM
ERT-8	1.2	1.0	1.0	1.2	0.3	0.6	0.7	0.2	0.2	1.0	2.2
ERT-9	0.8	0.8	1.0	1.1	0.5	1.3	1.0	0.3	0.4	NM	NM
ERT-23	NM	1.6	1.8	0.6	0.6	0.8	NM	NM	NM	NM	0.7
ERT-24	0.6	1.4	0.8	0.8	1.2	NM	NM	NM	NM	NM	2.0
ERT-25	0.8	1.0	1.8	0.7	1.2	1.0	NM	NM	NM	NM	1.6
ERT-26	0.4	0.7	0.8	1.7	0.5	NM	NM	NM	NM	NM	2.3
ERT-27	0.6	1.0	1.9	0.6	1.0	NM	NM	NM	NM	NM	NM
ERT-28	0.5	1.6	6.4	1.8	1.4	NM	NM	NM	NM	NM	4.8
ERT-29	0.6	2.6	1.2	1.0	0.9	NM	NM	NM	NM	NM	NM
ERT-30	1	7.2	7.5	4.8	5.6	NM	NM	NM	NM	NM	NM
ERT-33	1.6	0.6	1.1	0.8	0.5	0.4	0.2	0.2	NM	NM	1.1
ERT-34	1.2	0.7	0.9	0.6	0.2	0.6	1.0	0.1	NM	NM	NM
FLTG-1	0.6	1.0	0.8	0.6	0.2	0.3	NM	NM	NM	NM	3.6
FLTG-2	0.6	8.0	1.0	0.7	8.0	1.2	NM	NM	NM	NM	NM
FLTG-3	1	0.3	1.3	1.0	0.5	0.8	NM	NM	NM	NM	NM
FLTG-4	0.8	1.2	1.0	0.7	0.9	0.6	NM	NM	NM	NM	NM
FLTG-5	0.6	0.2	0.8	1.0	0.6	0.4	NM	NM	NM	NM	3.0
FLTG-6	0.8	1.6	1.2	0.8	1.8	1.6	NM	NM	NM	NM	NM .
FLTG-7	1.2	0.4	1.6	0.7	0.8	0.6	0.1	0.1	0.8	0.4	2.0
FLTG-8	0.6	0.4	1.7	0.6	1.3	0.8	0.6	0.0	0.4	0.4	2.5
FLTG-9	0.4	0.7	1.2	3.7	9.4	11.4	14.5	10.9	15+	NM	NM
FLTG-10	0.6	1.8	1.1	1.0	1.2	2.2	0.6	1.6	2.6	4.6	3.2
FLTG-11	0.4	0.8	0.6	0.6	0.6	0.6	0.4	0.3	0.5	0.6	NM
FLTG-12	0.6	1.2	0.8	0.8	1.2	1.8	0.8	0.8	0.6	0.6	NM j
FLTG-13	1	0.2	0.3	0.7	0.8	0.8	0.8	0.2	0.4	0.6	2.6
FLTG-14	0.4	0.6	0.6	0.5	1.0	0.8	0.4	0.3	0.4	0.4	2.4
FLTG-15	0.8	0.7	0.8	0.9	1.0	1.2	NM	NM	NM	NM	2.4
INT-59-P1	0.4	0.0	1.6	0.5	0.6	0.5	1.2	0.8	0.6	0.8	NM
INT-59-P4	0.6	0.1	1.4	0.6	1.2	0.9	0.5	0.7	0.6	0.6	NM]
INT-60-P1	NM	0.2	1.7	0.6	1.2	1.0	1.0	0.2	0.4	0.8	NM I
INT-60-P4	0.8	0.4	1.4	0.7	1.2	0.8	1.4	0.4	0.4	0.6	NM
INT-101	1	0.7	1.0	0.6	0.6	0.4	0.8	0.4	0.2	0.8	2.6
INT-102	0.8	0.2	0.6	0.6	0.8	0.6	1.4	1.8	NM	20.6	15.0
INT-103	1	0.0	2.2	0.8	0.5	0.7	0.8	1.4	0.1	NM	1.3
INT-104	5.2	1.0	2.3	1.4	1.0	4.8	0.5	3.3	0.3	5.4	4.6
INT-105	1.4	0.1	1.2	0.4	0.6	0.7	0.02	0.2	0.4	8.7	4.6

Table 4-10 (Continued)

Dissolved Oxygen at Monitoring Wells

INT-106	11/22/93	2/3/94	0/4/04		240464			T			
INTT 400			3/4/94	4/5/94	6/2/94	6/1/94	7/3/94	7/31/94	9/2/94	10/1/94	12/15/94
	1.2	15+	15+	15+	15+	15+	15+	15+	15+	19.8	15.0
INT-107	1.0	0.6	15+	15+	15+	15+	15+	15+	15+	30.4	15.0
INT-108	0.8	0.3	1.1	0.5	0.9	0.2	0.8	0.2	0.2	1.3	2.1
INT-109	0.8	0.6	1.6	0.8	1.4	0.8	0.04	0.1	0.5	14.5	2.2
INT-110	0.6	1.0	1.6	0.9	1.3	0.9	0.5	0.1	0.8	2.2	0.8
INT-111	4.6	0.5	1.2	0.8	1.2	1.4	1.0	0.7	2.0	2.5	2.8
INT-112	3.4	11.2	15+	15+	15+	15+	15+	15+	15+	39.8	15.0
!NT-113	0.8	0.2	0.9	0.3	15+	15+	15+	8.6	15+	34.9	10.3
INT-114	1	0.8	1.6	0.6	0.8	0.8	1.1	0.8	0.4	2.1	1.5
INT-115	0.6	0.6	1.2	0.6	0.2	1.0	5.7	0.3	0.8	1.8	4.6
INT-116	1.4	3.2	2.4	3.4	3.0	3.8	NM	NM	NM	NM	2.4
INT-117	0.4	1.0	2.7	1.9	2.6	2.8	MM	NM	NM	NM	3.1
INT-118	0.8	0.1	4.8	3.8	3.2	2.2	NM	NM	NM	NM	2.0
INT-119	0.4	0.6	1.1	0.5	0.8	0.7	0.2	0.6	1.1	1.0	1.1
INT-132	NM	0.6	2.0	0.7	2.0	1.8	1.0	0.7	0.4	0.5	3.6
INT-133	NM	1.0	0.8	0.6	1.2	1.2	0.4	0.4	0.5	0.8	1.9
INT-134	NM	1.2	0.6	0.6	8.0	0.6	0.4	0.3	0.6	0.4	1.8
INT-135	NM	1.4	0.6	0.8	0.5	0.8	0.4	0.5	0.6	5.1	6.8
INT-137	NM	3.0	1.0	1.5	1.8	1.8	1.0	0.8	0.8	0.4	3.1
INT-138	NM	1.0	0.8	0.7	1.6	0.8	0.6	0.4	0.4	2.3	2.3
INT-139	NM	0.4	0.6	0.4	1.3	0.8	0.2	0.2	0.9	0.5	1.1
P-5	1.8	0.0	1.0	0.7	0.6	0.4	1.5	0.3	0.1	0.2	0.6
P-6	0.6	0.8	1.0	0.4	0.2	0.6	2.6	0.2	0.3	NM	NM
REI-10-2	0.8	0.2	1.2	0.8	0.6	0.8	0.9	0.3	0.4	0.4	1.1
REI-10-3	0.2	0.0	0.6	0.4	0.8	0.8	1.2	0.4	0.3	1.2	0.8
REI-12-2	0.8	1.2	0.8	3.4	2.3	2.0	NM	NM	NM	NM	2.4
S1-101	1.4	1.0	1.1	0.6	0.8	0.8	1.4	0.4	0.2	0.1	0.8
S1-102	0.6	0.6	1.6	0.7	0.5	0.6	1.4	0.3	0.4	0.6	0.5
S1-103	5.4	0.4	0.8	2.8	1.1	6.6	8.2	2.6	2.3	0.1	1.2
S1-104	1	1.0	1.6	1.0	0.6	8.0	0.8	0.0	1.8	3.5	3.9
S1-105	2.4	5.4	15+	1.1	12.8	15+	1.6	5.8	0.2	4.6	1.4
\$1-106	1	0.2	0.8	0.8	0.8	0.8	0.4	0.3	0.4	0.6	0.6
51-107	2.6	2.0	5.4	9.8	14.2	15+	15+	6.0	15+	16.0	15.0
S1-108	1.0	0.2	1.6	1.2	0.9	0.0	0.05	0.2	0.6	0.7	15.0
S1-109	1.2	1.1	8.4	15+	15+	15+	15+	15+	15+	29.4	5.2
81-110	1.0	1.0	1.3	1.0	0.6	1.4	0.03	0.3	0.6	0.3	0.6
51-111	1.6	0.6	2.0	1.0	1.0	0.8	0.5	0.2	15+	22.0	15.0
51-112	1.2	0.6	0.6	1.0	1.2	1.4	1.0	0.4	0.7	0.4	2.4
S1-113	0.6	0.6	1.8	0.7	1.0	0.8	0.4	0.5	0.4	1.0	2.7

Table 4-10 (Continued)

Dissolved Oxygen at Monitoring Wells

	11/22/93	2/3/94	3/4/94	4/5/94	6/2/94	6/1/94	7/3/94	7/31/94	9/2/94	10/1/94	12/15/94
81-114	0.8	0.8	0.8	0.9	0.7	1.2	1.0	0.3	0.4	0.6	1.5
81-115	0.8	2.4	1.8	0.6	0.8	1.6	NM	NM	NM	NM	3.2
S1-116	1.6	1.1	0.8	0.9	0.7	0.7	NM	NM	NM	NM	2.1
S1-117	[1]	1.7	2.0	2.0	1.2	2.3	NM	MM]	NM	NM	2.9
S1-118	0.6	0.5	1.6	0.6	1.2	0.6	NM	NM	NM	NM	3.4
S1-135	NM	0.8	1.2	0.8	0.8	1.3	0.5	0.2	0.2	0.3	0.8
S1-137	NM	0.9	1.0	0.8	1.4	1.0	0.8	0.4	0.8	0.8	1.0
S1-50-P1	1.0	15.0	15+	15+	15+	1.7	0.6	15+	15+	18.3	NM
S1-50-P3	8.5	1.0	15+	15+	15+	15+	0.4	15+	11.6	16.5	NM
S1-51-P1	1.0	0.1	1.0	0.2	15+	1.3	15+	0.4	15+	14.6	NM
S1-51-P3	0.6	0.7	1.5	0.7	1.2	0.8	0.04	0.6	0.6	0.3	NM
S2-101	NM	NM	NM	NM	NM	NM	NM	NM	NM	0.8	3.8
SG-1	NM	1.1	NM	NM	NM	NM	6.2	NM	NM	NM	NM
SG-2	NM	8.0	NM	NM	NM	NM	4.1	NM	NM	7.6	NM
SG-3	NM	7.7	NM	NM	NM	NM	6.8	6.3	NM	3.2	NM
SG-4	NM	5.2	NM	NM	NM	NM	NM	NM	NM	6.6	NM
SG-5	NM	5.7	NM	NM	NM	NM	4.0	NM	NM	NM	NM
W-3	0.2	0.4	1.1	0.4	0.3	0.2	1.0	0.5	0.5	0.7	1.8
W-4	1.2	0.2	1.4	0.6	0.5	0.4	0.8	0.5	0.5	0.8	NM
W-5	1.2	0.2	1.6	0.6	0.2	0.2	0.7	0.2	0.4	0.6	NM
W-7	1.2	0.9	0.8	0.4	0.4	1.0	0.6	0.2	0.3	NM	2.6

French Ltd. Project

FLTG, Incorporated

ATTACHMENT 4A

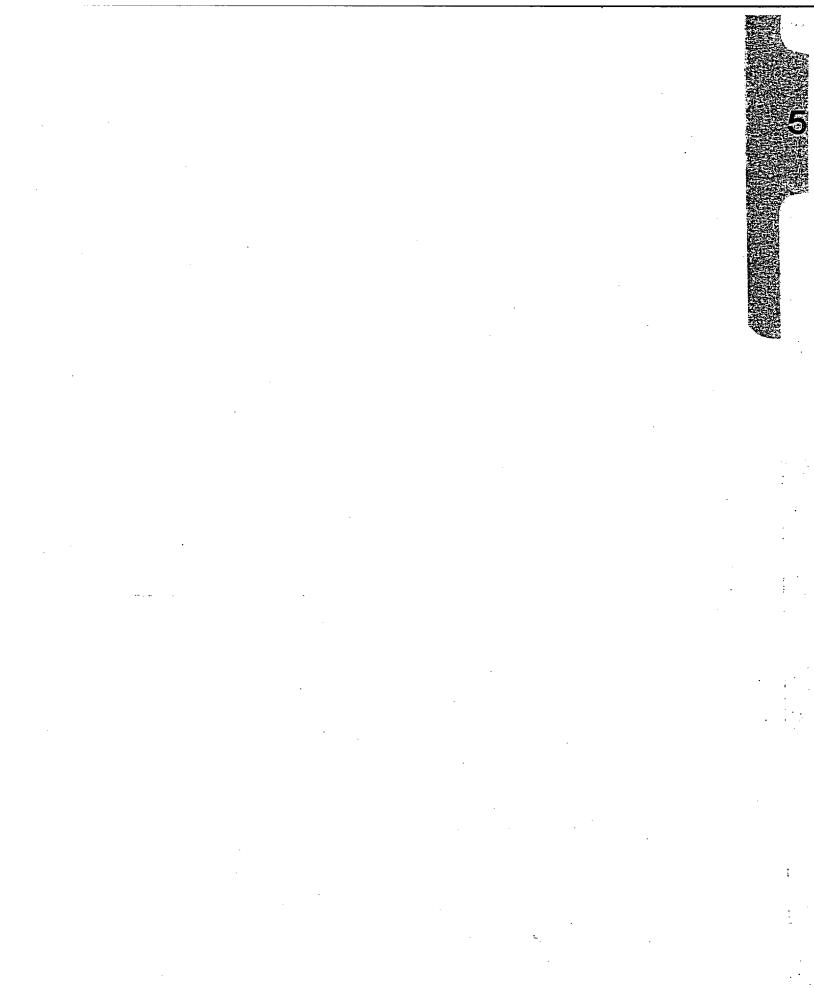
Texas Trees Planting Proposal

TEXAS TREES PLANTING PROPOSAL

Customer: French Limited Project

Crosby, Texas

Attention: Mark Collins


PROPOSED VARIETIES OF TREES:

- 3 15 GALLON RIVERBIRCH
- 3 15 GALLON BALD CYPRESS
- 3 15 GALLON RED MAPLE
- 3 15 GALLON LACEBARK/CHINESE ELM
- 3 15 GALLON WEEPING WILLOW
- 3 15 GALLON PINE
- 3 15 GALLON GREEN ASH
- 3 15 GALLON SWEETGUM
- 3 15 GALLON SWAMP CHESTNUT OAK
- 3 15 GALLON SAWTOOTH OAK
- 3 15 GALLON WATER OAK
- 3 15 GALLON WHITE OAK
- 3 15 GALLON WILLOW OAK
- 3 15 GALLON LIVE OAK
- 3 15 GALLON RED DAWN CEDAR

45 (15GALLON) TREES INSTALLED @\$89.50 EACH

TOTAL PRICE \$4,027.50

INSTALLATION PRICE INCLUDES PLANTING, MULCHING, SELECTIVE STAKING AND WATERING THE TREE IN. THESE ARE ESTIMATED QUANTITIES BY VARIETY AND ARE SUBJECT TO AVAILABILITY AT TIME OF COMPLETION. TREES CARRY SIX MONTH CONDITIONAL GUARANTEE PROVIDED THEY RECEIVE PROPER CARE/MAINTENANCE. TREES WHICH DIE AS A RESULT OF NATURAL DISASTER OR ACTS OF GOD WILL NOT BE GUARANTEED.

5.0 GROUNDWATER TREATMENT PLANT

5.1 Summary of Activities

Operations for the Groundwater Treatment Plant in January concentrated on correcting irregular flows from bioreactor #2 which resulted in upsets of the clarifier and sand filters.

Total suspended solids have been elevated since the last week in December when a 10 ppm value was reported by the laboratory.

Increased wasting activated sludge temporarily controlled the loading until operations determined the cause of irregular flows. Logs revealed that on occasion, the air flow in R-2 was short circuiting which caused severe turbulence in a portion of the media and no circulation in the remaining area allowing solids to drop out and build up. When flows increased, these dead areas broke through with high solids content, thus overloading the clarifier.

R-2 was taken out of service and drained to inspect the tank bottom which revealed four (4) feet of scale and sand covering the air diffusers. To prevent confined space entry exposure, a contractor was dispatched to vacuum these solids from the reactor. Three days later, R-1 was drained and cleaned also.

TOC loading has remained low through January as the S1 wells remain off inside the lagoon. S1-10 and S1-11 wells were activated for one week to evaluate the influence of pumping two middle wells has on water levels at the west end.

As reported in section 4.0 of the January, 1994, monthly report, S1-1 through S1-9 were converted to injection wells for Cell D water disposal to replenish the water table for the planting of new trees scheduled for February. This conversion allowed 442,000 gallons to be disposed of without loading the carbon in the GWT plant with dissolved solids.

There have been no other major mechanical repairs in the GWT plant.

There were no carbon transfers for this reporting period.

Total flows for January, 1995:

French Ltd. Project

FLTG, Incorporated

Water discharged to the San Jacinto River - 7,388,000 gallons

Water discharged to the Lagoon - 0

Sludge discharged to the Lagoon - 25,700 gallons

Water processed through the GWT - 7,164,600 gallons

Water discharged to the South Pond - 0

Water blended passed Carbon Filter - 5,749,600 gallons

Water processed from Cell D to GWT plant: metered - 0

Cell D injection at S1-1 through S1-9: metered - 442,000 gallons

5.2 Inoculum/Nutrient Addition

The following have been introduced into the bioreactors/clarifier:

Nutrients:

300 gallons Diammonium Phosphate

Microbes:

16 oz. French Limited Isolated Microbes

Coagulant:

4.0 gallons Percol 778 Cationic Polymer

5.3 Maintenance

Table 5-1 lists the preventive maintenance items performed in January.

5.4 **Operating Data**

Table 5-2 summarizes the laboratory analysis of the treated water discharged to the San Jacinto River.

TABLE 5-1

Preventive Maintenance

Day	Action
January 4	Lubed pumps and motors in GWT plant.
January 6	Checked oil. Lubed and checked belt tension on blowers 1, 2, & 3.
January 9	Completed safety inspection of all electrical equipment and cords.
January 12	Lubed and checked alignment on booster pump "B" chemical storage area.
January 17	Replaced filters in central filter.
January 20	Lubed sludge pump at IPS.
January 24	Lubed all pumps in chemical storage.
January 27	Lubed water booster pump "A".

TABLE 5-2
Treated Water Results Summary

	1	p	Н	T	SS	T	oc I	06	kG	Ben	zene	Chlo	HC's	Total	PCBs	Nepti	nateria
Coffected	Coffected Set No.		-9)	5 1	PPM	55	PPM	15 (PPM	150	PPB	4	PPB		PPB		PPB
		Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg
3-Oct-94	M03A0276	7.36		1.		43.		2.5		2.5		593.		.16		5.	
6-Oct-94	M03A0277	7.44		1.		43.1		2.5	ľ	6.		230.		.16		5.	ļ
10-Oct-94	M03A0278	7.61		1.		18.7		2.5		6.		310.		.16		5.	
13-Oct-94	M03A0279	7.28		1.		20.7	- 1	2.5	1	6.		380.		.16		5.	
3-Nov-94	CF-Out 1103	7.39		6.		23.1		2.5		2.5		14.		.16		5.	
14-Nov-94	M03A0282	7.4	1	9.	- 1	23.4	-	2.5	{	2.5		145.	- 1	.16	- {	5.	
17-Nov-94	M03A0283	7.38		2.		37.3		2.5	ł	2.5		611.		.16		5.	
21-Nov-94	M03A0284	7.27		4.		5.5	ľ	2.5	ł	6.		423.	ł	.16		5.	ı
24-Nov-94	M03A0285	7.26	7.38	4.	3.22	38.8	28.2	2.5	2.5	25.	6.56	1647.	484	.16	.16	5.	5.
28-Nov-94	M03A0286	7.24	7.36	.5	3.17	44.7	28.4	2.5	2.5	12.5	7.67	668.	492	.16	.16	5.	5.
1-Dec-94	M03A0287	7.4	7.36	1.	3.17	34.8	27.4	2.5	2.5	6.	7.67	526.	525	.16	.16	5.	5.
5-Dec-94	M03A0288	7.57	7.35	1.	3.17	28.5	28.5	2.5	2.5	6.	7.67	305.	524	.16	.16	5.	5.
8-Dec-94	M03A0289	7.52	7.38	1.	3.17	40.6	30.7	2.5	2.5	6.	7.67	480.	535	.16	.16	5 .	5.
12-Dec-94	M03A0290	7.43	7.39	4.	2.94	33.	31.8	2.5	2.5	6.	8.06	342.	572	.16	.16	5.	5.
15-Dec-94	M03A0291	8.13	7.47	.5	2.	23.	31.8	2.5	2.5	6.	8.44	145.	572	.16	.16	5.	5.
19-Dec-94	M03A0292	7.96	7.53	1.	1.89	29.3	30.9	2.5	2.5	2.5	8.44	75.	512	.16	.16	5.	5.
22-Dec-94	M03A0293	7.91	7.6	4.	1.89	17.8	32.3	2.5	2.5	2.5	8.06	170.	484	.16	.16	5.	5.
26-Dec-94	M03A0294	7.68	7.65	10.	2.56	41.8	32.6	2.5	2.5	6.	5.94	353.	340	.16	.16	5.	5.
29-Dec-94	M03A0295	7.79	7.71		2.61	15.4	29.4	2.5	2.5	2.5_	4.83	205.	289.	<u>.16</u>	.16	<u>5.</u>	5.
2-Jan-95	M03A0296	7.78	7.75	4.	2.94	12.9	26.9	2.5	2.5	5.	4.72	275.	261	.16	.16	5.	5.
5-Jan-95	M03A0297	7.81	7.78	5.	3.39	19.	25.9	2.5	2.5	6.	4.72	249.	255	.16	.16	5.	5.
9-Jan-95	M03A0298	7.8	7.81	7.	4.06	9.8	22.4	2.5	2.5	2.5	4.33	124.	215	.16	.16	5.	5.
12-Jan-95	M03A0299	7.77	7.85	2.	3.83	9.8	19.9	2.5	2.5	2.5	3.94	200.	200	.16	.16	5.	5.
16-Jan-95	M03A0300	7.61	7.79	4.	4.22	18.3	19.3	2.5	2.5	6 .	3.94	393.	227	.16	.16	5.	5.
19-Jan-95	M03A0301	7.44	7.73	2.	4.33	19.8	18.3	2.5	2.5	5.	4.22	454.	269	.16	.16	5.	5.
23-Jan-95	M03A0302	7.82	7.72	9.	4.89	35.5	20.3	2.5	2.5	6.	4.61	192.	272	.16	.16	5.	5.
26-Jan-95	M03A0303	7.66	7.72	.5	3.83	20.5	17.9	2.5	2.5	6.	4.61	234.	258	.16	.16	5.	5.
30-Jan-95	M03A0304	7.15	7.65	4.	4.17	44.3	21.1	<u>2.5</u>	2.5	25.	7.11	2326.	494	.16	.16	5.	5.
2-Feb-95	M03A0305	7.28															

Discharge sample of 17-Oct destroyed in flood.

Chlorinated hydrocarbons value is sum of detected concentrations of 21 volatile chlorinated hydrocarbons on target compound list.

TABLE 5-2 (Continued) Treated Water Results Summary

	1		As		3a	-	id id		Cr	_		- P	b		Vfm		lg		M		Se .		· a	7	'n
Collected	Set No.		PPB		PPB		PP8		PPB		PPB	66			PPB		PPB		PPB		PPB		PB		PPB
	*******	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Ave	Daily	R-Avg
3-Oct-94	M03A0276	13.		60.		1.3		2.5		3.		1.3		11.		-1		20.		1.3		2.5		9.	
6-Oct-94	M03A0277	14.		73.		1.3		2.5		3.		1.3		9.		.1		2.5		1.3		2.5		3.8	J
10-Oct-94	M03A0278	11.		58.		1.3		2.5		3.		1.3		1.3		.1		1.3		1.3		2.5	i	10.	1
	M03A0279	10.		70.		1.3		2.5		2.5		1.3		3.		-1		2.5		1.3		2.5		3.8	ŀ
3-Nov-94	CF-Out 1103	46		32.		.1		5.	ĺ	5.		.5		21.		.1		7.		1.3		.2		50.	ľ
	M03A0282	30.		12.] .1		.2		3.		.5		.1		-1		.1		1.2		.2		3.	1
	M03A02B3	15.		51.		.1	1	2.		2.		.5		14.		.1		8.		1.2		.2		6.	I
	M03A0284	10.		50.		.1	_ :	.2	_	2.		.5		6.		-1	_	4.		1.2		.2		4.	
	M03A0285	16.	18.3	79.	54	.1	.6	1.	2.	2.	2.8	.5	.8	27.	10.3	-1	.1	7.	5.8	1.3	1.2	.2	1.2	1.5	10.1
	M03A0286	6.	17.8	115.	80		.5	.2	1.8	2.	2.7	.5	.8	18.	11.	.)	.!	7.	4.4	1.3	1.2	.2	.9	6.	9.8
	M03A0287	11.	17.2	109.	64	! !!	-4	.5	1.6	1.	2.5	.5	.7	7.	10.8 12.8	-1	.1	10.	5.2 5.2	1.3	1.2	.5	.7	4.	9.8 9.7
	M03A0288	12.	17.3	121.	71 77	. 1	.2	1.	1.4	3.	2.5]]. E	.6	19. 3.	12.8	•!	.1	.9	5.∠ 6.	1.3 1.3	1.2	.5 .2	.5 .2	9. 3.8	9.7
	M03A0289	14. 7.	17.8 13.4	128. 154.	91	•	.1	7.	1.2	.3	2.3 2.1	.5 .5	.6 .6	9.	11.5		.1	10. 13.	6.7	1.3	1.2	.2	.2	5.	4.7
	M03A0291	49.	15.6	92.	100	1 '	- 1	<i>'</i> .	1.6	.7	1.9	.5 E	.6	3.	11.8	.,	- 1	13.	6.8	5.	1.7	.2	.2	5. 5.	4.9
	M03A0292	16.	15.7	93.	105	';	.1	1	1.5	1.	1.8	.5	.6	3.	10.6	.1	.i	2.	6.1	1.	1.6		.2	4	4.7
	M03A0293	17.	16.4	130.	113	;	.1	.2	1.5	1.4	1.7	.5	.6	2.	10.1	.1	ij	2.	5.9	1.3	1.6	.2	.2	1.5	4.4
	M03A0294	11.	15.9	151.	121	i .i	.1	.2	1.4	1.8	1.7	.5	.6	9.	8.1	.1	.1	4.	5.5	1.3	1.6	.2	.2	6.	4.9
	M03A0295	18.	17.2		121	.2	_i	1.	1.5	1.	1.6	.5	.6	4.	6.6	.1	.1	3.	5.1	5.	2.1	.2	.2	4.	4.7
2-Jan-95	M03A0296	9.9	18.3	172.	140	.1	-1	2.1	1.8	1.6	1.8	.5	.6	18,	8.6	.1	.1	1.	5.2	1.2	2.2	.2	.2	7.	5.5
5-Jan-95	M03A0297	14.	18.7	151.	145	.1	.1	3.	2.	2.	1.9	.5	.6	57 .	14.1	.1	.1	6.	4.8	1.2	2.2	.2	.2	20.	7.3
3-Jan-85	M03A0298	12.	18.7	171.	151	.1	.1	.9	2.	3.	1.9	.5	.6	23.	14.6	.1	.1	4.	5.1	1.3	2.2	.2	.2	7.	7.
12-Jan-85	M03A0299	16.	18.9	143.	152	.1	.1	.2	1.9	2.	2.1	.5	.6	2.	14.4	.1	.1	2.	4.2	1.3	2.2	.2	.2	3.	6.9
16-Jan-95	M03A0300	12.	19.4	146.	151	.1	1 j	.6	1.2	3.	1.9	.5	.6	1.	13.6	.1	.1	3.	3.1	1.3	2.2	.2	.2	6.	7.1
19-Jan-95	M03A0301	18.	16.	135.	156	.1	.1	.4	1.1	2.	2.1	.5	.6	2.	13.4	.1	.1	4.	3.4	1.3	1.8	.2	.2	18.	8.5
	M03A0302	12.	15.5	140.	161	.1	.1	.2	1.	2.	2.2	.5	.6	3.	13.4	.1	.1	6.	3.9	1.3	1.8	.2	.2	16.	9.8
	M03A0303	16.	15.4	148.	163	.1	.1	.2	1.	2.	2.3	.5	.6	2.	13.4	.1	.1	2.	3.9	1.3	1.8	.2	.2	12.	11.
30-Jen-95	M03A0304	<u>9.</u>	15.2	238.	173	1	_!	.2	1.	<u>2.</u>	2.3	.5	.6	<u>43,</u>	17.2	<u>1</u>	<u>.1</u>	<u>3.</u>	3.8	1.3	1.8	.2	.2	5.	10.9

Discharge sample of 17-Oct destroyed in flood. Metals values in PPB.

6.0 AMBIENT AIR MANAGEMENT

Ambient air quality management continued on an "as-needed" basis to protect the environment, human health, and site workers.

6.1 Summary of Activities

Collected and analyzed three time-integrated personnel exposure samples; the measured levels of volatile organic compounds were well below the action levels.

Sampled the ambient air in all work areas several times per shift and on a random "spotcheck" basis; there were no levels of volatile organic compounds which required response action. Sampled ambient air in special work areas where burning and/or welding was planned. Sampled ambient air continuously in areas where exposure could occur.

6.2 Problems and Response Action

<u>Problem</u>	Response Action
Calibrate portable vapor meters.	Train operators to calibrate; refurbish all meters.
Sampling "hot" wells.	Require respirator use when sampling "hot" wells.
Ambient air quality in all work areas.	Check all work areas with portable meter several times per day.
H ₂ S levels in some well vaults.	Vent vault and purge with air before working in the vaults.

MONTHLY PROGRESS REPORT Ambient Air Management

French Ltd. Project FLTG, Incorporated

6.3 Problems Resolved

None.

6.4 On-going Events/Activities

Measure ambient air quality in all work areas several times per day.

Conduct periodic time-integrated sampling in all major work areas.

Require respiratory protection when sampling "hot" wells.

Conduct necessary air sampling and analyses to issue "burn" permits.

Closely monitor ambient air quality in the vicinity of new projects/activities.

Conduct respirator fit tests on all employees.

French Ltd. Project

FLTG. Incorporated

7.0 QUALITY ASSURANCE/QUALITY CONTROL

7.1 Summary of Activities

7.1.1 Sampling

One set of personal air monitoring samples were collected in January. The following is a summary of current routine and special air matrix code sample specifics:

MATRIX CODE

SAMPLE SPECIFICS

M01D

TF at three locations

TF = Tenax® front tube

Table 7-1 is a summary of the air, soil and water samples collected for the month of January. Table 7-2 is a summary of Scheduled Sampling Events for the month of January.

7.1.2 Data Validation Activities Summary

7.1.2.1 Treated Water Samples

Data validation was completed for sample sets M03A0286, M03A0287, M03A0288, M03A0289, M03A0290, M03A0291, M03A0292, M03A0293, M03A0294 and M03A0295. These samples were collected between November 28, 1994 and December 29, 1994. QC failures are summarized in Table 7-3. Completeness values are summarized in Tables 7-4 through 7-8.

7.1.2.2 Groundwater Samples

Level I data validation was completed for sample sets collected during the 1994 annual groundwater sampling event. QC summaries and completeness values for this sampling event will be reported in the February monthly report and in the 1994 Annual QA Report to be completed in mid March..

7.1.2.3 Other Samples

All other special sample sets were validated manually this period.

French Ltd. Project

FLTG. Incorporated

7.2 Data Validation QC Summary and Discussion

7.2.1 Level I and Level II QC Philosophy

The Quality Assurance Project Plan (QAPP) defines data validity in terms of procedural requirements which must be followed for data comparability, and numerical data quality objectives which must be met to assure precision and accuracy of the results. Precision, accuracy and completeness are the numerical Data Quality Objectives (DQOs) established for the French Project by the QAPP. The intent of the data validation process is to verify that the documentation and quality control data provided by the laboratory properly substantiate the required data quality.

For purposes of data validation procedures, the QAPP defines two QC levels: Level I and Level II. Level I data validation is specified for process control and progress monitoring sample data validation and Level II data validation is specified for remediation verification sample results and treated water discharge sample results.

7.2.2 QA Issues

7.2.2.1 Double Blind Spike Samples

FLTG submitted a double blind spike sample to AATS-LA on January 12, 1995. This sample was prepared by Environmental Resource Associates, Inc., a company specializing in spike sample preparation. The analytical results of this sample will be reported in the February monthly report.

TABLE 7-1 Samples Collected - January, 1995

Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	Lab
M01D005001	Personal air monitoring	WTP Operator	1/18	1/19	Υ	A
M01D005002	Personal air monitoring	Well Maint.	1/18	1/19	Ý	Ā
M01D005003	Personal air monitoring	Security	1/18	1/19	Ÿ	Â
11.01000000	resonaren montonig	Security	1/10	1/13	T	^
M03A029601	Treated water dishcarge	CF Out	1/02	1/03	Y	A
M03A029701	Treated water dishcarge	CF Out	1/05	1/06	Y	A
M03A029801	Treated water dishcarge	CF Out	1/09	1/10	Y	A
M03A029901	Treated water dishcarge	CF Out	1/12	1/13	Y	A
M03A030001	Treated water dishcarge	CF Out	1/16	1/17	Y	A
M03A030101	Treated water dishcarge	CF Out	1/19	1/20	N	A
M03A030201	Treated water dishcarge	CF Out	1/23	1/25	N	A
M03A030301	Treated water dishcarge	CF Out	1/26	1/27	N	A
M03A030401	Treated water dishcarge	CF Out	1/30	2/01	N	A
M06B006701	Double blind lab spike	R1-A	1/11	1/12	Y	A
M06B006702	Double blind lab spike	R1-B	1/11	1/12	Ÿ	Ā
.4100000010Z	Sounie viilla lan spike	111-0	1/11	1/12	T	^

 A = American Analytical and Technical Services
 N = North Water District Lab
 K = Chester LabNet-Houston Labs:

TABLE 7-1 Samples Collected - January, 1995

Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	<u>Lab</u>
M06C002201	Process water monitoring	T-101 Eff	1/09	1/10	Y	A
M06C002202	Process water monitoring	T-101 Inf	1/09	1/10	Y	A
M06C002203	Process water monitoring	R1	1/09	1/10	Y	A
M06C002204	Process water monitoring	R2	1/09	1/10	Y	A
M06C002205	Process water monitoring	Cell D Liqr	1/09	1/10	Y	A
M08C001001	Riverdale well - Fecal Coliform	RD-3	1/19	1/19	Y	N
M08D001301	Riverdale well - Volatile	RD-3	1/19	1/20	Y	A
S14K001101	DNAPL area monitoring	S1-063	1/23	1/24	Y	A
S14K001102	DNAPL area monitoring	S1-127	1/23	1/24	Y	Α
S14K001103	DNAPL area monitoring	S1-128	1/23	1/24	Y	A
S14K001104	DNAPL area monitoring	S1-132	1/23	1/24	Y	Α
S14K001105	DNAPL area monitoring	S1-133	1/23	1/24	Y	Α
S14K001106	DNAPL area monitoring	S1-134	1/23	1/24	Y	A
S16B002901	Treated water discharge - Metals split	Effluent-A	1/23	1/24	Y	A
S16B003001	Treated water discharge - Metals split	Effluent-K	1/23	1/23	N	K

Labs: A = American Analytical and Technical Services
N = North Water District Lab
K = Chester LabNet-Houston

TABLE 7-2

Scheduled Sampling Events January, 1995

Date Sampled	Set Number	Description	Schedule
1/23/95	S14K0011	DNAPL area monitoring	Special
1/23/95 1/23/95	S16B0029 S16B0030	Discharge metals split Discharge metals split	Special Special
1/11/95	M06B0067	Double blind lab spike	Special
1/09/95	M06C0022	Monthly process water	Monthly
1/18/95	M01D0050	Personal Air Monitoring	Monthly
1/19/95 1/19/95	M08C0010 M08D0013	Riverdale well Riverdale well	Monthly Monthly
1/02/95	M03A0296	Treated water discharge	Bi-weekly
1/05/95	M03A0297	Treated water discharge	Bi-weekly
1/09/95	M03A0298	Treated water discharge	Bi-weekly
1/12/95	M03A0299	Treated water discharge	Bi-weekly
1/16/95	M03A0300	Treated water discharge	Bi-weekly
1/19/95	M03A0301	Treated water discharge	Bi-weekly
1/23/95	M03A0302	Treated water discharge	Bi-weekly
1/26/95	M03A0303	Treated water discharge	Bi-weekly
1/30/95	M03A0304	Treated water discharge	Bi-weekly

MONTHLY PROGRESS REPORT Quality Assurance/Quality Control

French Ltd. Project

TABLE 7-3

Treated Water QC Failure Summary

Sample Date	Test	QC Failure	Explanation	Corrective Action
12/01/94	PCB	SU Recov.	Surrogate TCX and DCB were outside QC limits on column 1 for this sample.	None required - surrogate recovery must pass on one of two column analysis.
12/01/94	Ва	ICP Interf.	Interference was indicated by the ICP serial dilution.	None required - LCS, Dup and Spike were within QC limits.
12/05/94	Ва	ICP Interf.	Interference was indicated by the ICP serial dilution.	None required - LCS, Dup and Spike were within QC limits.
12/05/94	Mn	ICP Interf.	Interference was indicated by the ICP serial dilution.	None required - LCS, Dup and Spike were within QC limits.
12/05/94	sv	SU Recov.	Surrogate recoveries (SU3) were outside QC limits for this sample.	None required - one Acid and one B/N surrogate are allowed to be outside QC limits.
12/08/94	sv	SU Recov.	Surrogate recoveries (SU3) were outside QC limits for this sample.	None required - one Acid and one B/N surrogate are allowed to be outside QC limits.
12/12/94	sv	SU Recov.	Surrogate recoveries were outside QC limits on the blank associated with this sample set.	Samples were re-extracted and re- analyzed. Surrogate recoveries were within QC limits.
12/12/94	Ba	ICP Interf.	Interference was indicated by the ICP serial dilution.	None required - LCS, Dup and Spike were within QC limits.
12/12/94	sv	SU Recov.	Surrogate recoveries (SU1) were outside QC limits for this sample.	None required - one Acid and one B/N surrogate are allowed to be outside QC limits.
12/15/94	SV	SU Recov.	Surrogate recoveries were outside QC limits on the blank associated with this sample set.	Samples were re-extracted and re- analyzed. Surrogate recoveries were within QC limits.
12/19/94	SV	SU Recov.	Surrogate recoveries (SU6) were outside QC limits for this sample.	None required - one Acid and one B/N surrogate are allowed to be outside QC limits.
12/19/94	sv	SU Recov.	Surrogate recoveries (SU6 and SU3) were outside QC limits for the MS associated with this sample.	None required - one Acid and one B/N surrogate are allowed to be outside QC limits.
12/26/94	VOA	MS Prec.	Relative percent difference values were outside QC limits for the benzene spike on the MS/MSD pair associated with this sample.	Matrix spike percent recoveries were within QC limits on both the Vinyl chloride and Benzene spike. RPD values for Vinyl chloride were within QC limits
12/26/94	sv	IS Recov.	Internal standard recoveries (IS5) were outside QC limits on the sample and MS/MSD pair.	None required - Matrix effect indicated.
12/26/94	SV	MS Accur	Matrix spike for naphthalene was outside QC limits on the MS associated with this set.	RPD values were within QC limits. Matrix effect indicated by IS failure.
12/26/94	sv	SU Recov.	Surrogate recoveries (SU3) were outside QC limits for this sample.	None required - one Acid and one B/N surrogate are allowed to be outside QC limits.
12/26/94	sv	SU Recov.	Surrogate recoveries (SU6) were outside QC limits for the MS associated with this sample.	None required - one Acid and one B/N surrogate are allowed to be outside QC limits.

7.2.3 Completeness Summaries

Tables 7-4 through 7-8 summarize completeness values for VOA, SVA, PCBs, Metals and miscellaneous parameters on treated water samples.

VOA (Table 7-4)

A total of 10 VOA sample sets have been validated with all categories meeting Project Completeness Goals.

SVA (Table 7-5)

A total of 10 SVA sample sets have been validated for this time period. All categories meet or exceed Project Completeness Goals with the exception of sample matrix effect. This is due to matrix effect failures in the early stages of the project and the MS/MSD accuracy failures that occurred during September and October 1994.

PCBs (Table 7-6)

A total of 10 PCB sample sets have been validated for this time period with all samples, meeting data quality objectives. All categories meet or exceed Project Completeness Goals.

Metals (Table 7-7)

A total of 10 sample sets have been validated for this time period. Project Completeness Goals are met or exceeded in all categories.

Miscellaneous Parameters (Table 7-8)

A total of 10 sample sets have been validated for this time period. Project completeness goals are met or exceeded in all categories.

TABLE 7-4

Completeness Summary M03A Treated Water Volatile Organics Analyses

SAMPLE DATE SET NUMBER	M03A0286 thru M03A0295	Project to Date	PROJECT GOAL
Analysis Holding Time 12 Hour Window	100 100	100 100	100 100
SU Check SU1 (d4-1,2-DCE) SU2 (d8-Toluene) SU3 (4-BFB) IS Check IS1 (BrCIMethane) IS2 (1,4-DiFIBenzene) IS3(d5-CIBenzene)	100 100 100 100 100 100 100	93 97 98 99 100 100 100	90 90 90 90 90 90
Sample RT/RRT Check	100	•	
Vinyl Chloride Accuracy Precision Benzene Accuracy Precision	100 100 100 90	99 99 99 100	90 90 90
No Group Matrix Effect No Sample Matrix Effect Tune Check Overall ICAL Check Overall CCAL Check Overall Lab Blank Check	100 100 100 100 100 100	•	90 90

^{* -} Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

TABLE 7-5

Completeness Summary M03A Treated Water Semivolatile Organic Analyses

SAMPLE DATE SET NUMBER	M03A0286 thru M03A0295	Project to Date	PROJECT GOAL
Extract Holding Time	100	100	100
Analysis Holding Time	100	100	100
12 Hour Window	100	100	100
SU Check	100	95	90
SU1 (2-FIPhenol)	100	95	90
SU2 (d5-Phenol)	100	93	90
SU3 (d5-Nitrobenz)	60	96	90
SU4(2-FIBiphenyl)	100	97	90
SU5(2,4,6-TBPh)	100	94	90
SU6(d14-Terphen)	100	94	90
IS Check	100	96	90
IS1 (d4-1,4-DiClBenz)	100	100	90
IS2 (d8-Naph)	100	100	90
IS3 (d10-Acenaph)	100	100	90
IS4 (d10-Phenanth)	100	100	90
IS5 (d12-Chrysene)	90	97	90
IS6 (d12-Perylene)	100	96	90
Sample RT/RRT	100	•	•
Napthalene			
Accuracy	90	95	90
Precision	100	99	90
No Group Matrix Effect	100	100	90
No Sample Matrix Effect	100	88	90
Tune Check	100	*	*
Overall ICAL Check	100	•	•
Overall CCAL Check	100	*	*
Overall Lab Blank Check	100	•	*

 $^{^{\}rm *}$ - Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

TABLE 7-6

Completeness Summary M03A Treated Water PCB Analyses

SAMPLE DATE SET NUMBER	M03A0286 thru M03A0295	Project to Date	PROJECT GOAL
Extract Holding Time	100	100	100
Analysis Holding Time	100	100	100
12 Hour Window	100	100	100
SU Check - Column A	100	99	90
SU1 (DCBP)	90	83	NS
SU2 (TCMX)	90	97	NS
SU Check - Column B	100	98	90
SU1 (DCBP)	100	84	NS
SU2 (TCMX)	100	97	NS
SU Check - Column A or B	100	98	90
Aroclor 1242			
Accuracy	100	99	90
Precision	100	97	90
Overall ICAL Check	100	•	
Overall 1st CCAL Check	100		
Overall 2nd CCAL Check	100	•	
Overall Lab Blank Check	100	•	

^{* -} Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

French Ltd. Project

FLTG. Incorporated

TABLE 7-7

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0286 thru M03A0295	PROJECT GOAL
ANALYTE: BARIUM		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	70	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100
ANALYTE: CADMIUM		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100
ANALYTE: CHROMIUM		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100
ANALYTE: COPPER		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100
ANALYTE: LEAD		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100

W - All samples waived due to low response

Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

TABLE 7-7 (Continued)

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0286 thru M03A0295	PROJECT GOAL
ANALYTE: MANGANESE		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 90 100 100	95 95 NA 100 100
ANALYTE: NICKEL		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: SILVER		
MS Accuracy DUP Precision/Difference No Matrix Interference Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: ZINC		
MS Accuracy DUP Precision/Difference No Matrix Interference Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: MERCURY		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100

W - All samples waived due to low response

Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

MONTHLY PROGRESS REPORT Quality Assurance/Quality Control

French Ltd. Project

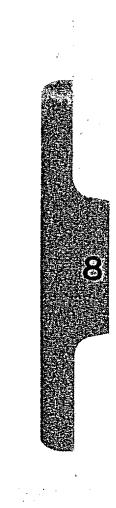
FLTG. Incorporated

TABLE 7-7 (Continued)

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0286 thru M03A0295	PROJECT GOAL
ANALYTE:ARSENIC		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100
ANALYTE: SELENIUM		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100

W - All samples waived due to low response


Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

TABLE 7-8

Completeness Summary M03A Treated Water Miscellaneous Parameters Analyses

SAMPLE DATE SET NUMBER	M03A0286 thru M03A0295	Project to Date	PROJECT GOAL
PARAMETER: TOC			
Analysis Hold Time MS Accuracy DUP Precision	100 100 100	100 100 100	100 NA NA
PARAMETER: OILS			
Analysis Hold Time MS Accuracy DUP Precision	100 100 100	100 100 100	100 NA NA
PARAMETER: TSS		-	
Analysis Hold Time MS Accuracy DUP Precision	100 NA 100	100 NA 100	100 NA NA

8.0 SITE MAINTENANCE

8.1 Summary of Activities

8.1.1 General Housekeeping

The site safety and housekeeping inspections and responses kept grounds safe and attractive for employees and visitors.

8.1.2 Purchasing

All purchases were covered by written requisitions and purchase orders. Purchase of chemicals is now reduced to groundwater treatment and insitu remediation.

8.1.3 Equipment Maintenance

Routine preventive and production maintenance was performed on all equipment.

8.2 Visitors

The following visitors were recorded at the site during January:

January 5: Monica Mizell, ASTRO

January 6: Alan Etheredge, TNRCC

Gary McGill, TNRCC

January 9: Delphany Jordan, BSCHOOL

Carla Windfont, BSCHOOL

January 10: Stephanie Hrabar, GEMS²

Mustauta Soribudeh, Env. Geophysics

Richard WU, Ground Survey

Richard Barnett, GSH - SIG

January 12: Chip Boxley, Texas Trees

Manual Alreaiz, Sinclay

January 13: Juross John, Quantonia

January 18: E.D. Murphy, IND

Michael Davies, student

January 19: Stephanie Hrabar, Geoscience

Bill Coleman, Nature's Way M.L. Randall, Nature's Way

January 23: Norma LaDay, BSCHOOL

Carla Windfont, BSCHOOL

Alexandria Windfont, BSCHOOL Delphany Jordan, BSCHOOL

January 24: Richard Barnett, GSH/Gatt

Mustafa Saribudak, Environmental Geophysics

Richard Wu, Ground Survey, Inc.

David Sheese, BR Jones Stephanie Hrabar, GEMS²

David Hugh, BPA

January 25: Steve Vien, Dow Chemical

R.E. Berkley, USEPA

January 28: Christopher Nichols, Rice University

January 30: Richard Wu, Ground Survey, Inc.

A.H. Klareness, KRC David Shave, B.R. Jones Warren Franz, ARGO

French Ltd. Project

FLTG, Incorporated

Sheldon Topham
Steve Jouette, Trinity Valley Nsr.

8.3 Emergency Equipment

8.3.1 Flood Gate Test

The flood gate was exercised on January 16, 1995, with one small leak detected at the striker seal.

8.3.2 P-8 Auxiliary Pump

P-8 Auxiliary Pump was exercised on January 16, 1995.

8.3.3 Fire Extinguishers

All fire extinguishers were inspected and certified.

8.4 Security

Smith Security provides 24-hour security at the FLTG site, including the south side of Gulf Pump Road; all site areas are checked hourly. No incidents reported by Security in January.

8.5 Operator Training

All training is documented and records are maintained on site.

8.6 Data Management

Data base is fully operational. Data is entered on a daily basis.

8.7 Personnel Monitoring

Results of personnel monitoring conducted during January are included in Table 8-1.

French Ltd. Project FLTG, Incorporated

8.8 OVM System

The new meteorological station was placed on-line January 25th and is now operational.

Work areas are being monitored daily with Organic Vapor Monitor 580A.

8.9 Repository

SITE.01

Records from the January review are listed in Attachment 8A.

TABLE 8-1

On-Site Employee Contaminant Limits
(From OSHA 29 CFR 1910 Subpart Z)

	D.E.1					C	
	PEL	M010005001 18-Jan-95 WTP Operator		M01D005002 18-Jan-95 Well Maintenance		M01D005003 18-Jan-95 Security	
	8 hour			% of PEL	PPM	% of PEL	PPM
Compound	PPM	% of PEL	PPM	% OT PEL	PPM	70 OT PEL	PPM
Chloromethane	50	0.000	0.000	0.000	0.000	0.000	0.000
Bromomethane	5	0.000	0.000	0.000	0.000	0.000	0.000
Vinyl chloride	1	0.000	0.000	0.000	0.000	0.000	0.000
Chloroethane	1000	0.000	0.000	0.000	0.000	0.000	0.000
Dichloromethane	50	0.000	0.000	0.001	0.001	0.000	0.000
Acetone	750	0.000	0.002	0.000	0.002	0.001	0.005
Carbon disulfide	10	0.000	0.000	0.000	0.000	0.000	0.000
1.1-Dichloroethene	5	0.000	0.000	0.000	0.000	0.000	0.000
1.1-Dichloroethane	100	0.000	0.000	0.000	0.000	0.000	0.000
trans-1,2-Dichloroethe	200	0.000	0.000	0.000	0.000	0.000	0.000
Chloroform	10	0.007	0.001	0.001	0.000	0.000	0.000
1.2-Dichloroethane	10	0.002	0.000	0.000	0.000	0.000	0.000
2-Butanone	200	0.003	0.005	0.000	0.000	0.000	0.001
1.1.1-Trichloroethane	350	0.000	0.000	0.000	0.000	0.000	0.000
Carbon Tetrachloride	5	0.002	0.000	0.001	0.000	0.001	0.000
Vinyl acetate	10	0.001	0.000	0.001	0.000	0.000	0.000
Bromodichloromethane		1 0.00	0.000	11 5.55	0.000	5.555	0.000
1.2-Dichloropropane	75	0.000	0.000	0.000	0.000	0.000	0.000
cis-1.3-Dichloropropen		0.000	0.000	0.000	0.000	0.000	0.000
Trichloroethene	50	0.000	0.000	0.000	0.000	0.000	0.000
Dibromochloromethane	1		0.000		0.000		0.000
1.1.2-Trichloroethane	10	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	1	0.033	0.000	0.064	0.001	0.015	0.000
trans-1.3-Dichloroprop	-	0.000	0.000	0.000	0.000	0.000	0.000
2-Chloroethylvinyl ethe			0.000		0.000		0.000
Bromoform	0.5	0.000	0.000	0.000	0.000	0.000	0.000
4-Methyl-2-pentanone	50	0.002	0.001	0.000	0.000	0.001	0.000
2-Hexanone	5	0.001	0.000	0.002	0.000	0.001	0.000
Tetrachloroethene	60	0.000	0.000	0.000	0.000	0.000	0.000
1.1.2.2-Tetrachloroet	1	0.000	0.000	0.008	0.000	0.000	0.000
Toluene	100	0.004	0.004	0.003	0.003	0.000	0.000
Chlorobenzene	10	0.000	0.000	0.000	0.000	0.000	0.000
Ethylbenzene	100	0.000	0.000	0.000	0.000	0.000	0.000
Styrene	50	0.000	0.000	0.000	0.000	0.000	0.000
Xylene (total)	100	0.000	0.000	0.000	0.000	0.000	0.000
Hexane			0.002		0.001		0.000

A

058916

MONTHLY PROGRESS REPORT Site Maintenance

French Ltd. Project FLTG, Incorporated

ATTACHMENT 8A

Repository Status Report: January, 1995

French Ltd. Project

FLTG, Incorporated

REPOSITORY STATUS REPORT: January, 1995

At the Rice University Library...

- 1. Remedial Investigation Report April, 1985
- 2. Remedial Investigation Report Appendices, Volume II, April, 1985
- 3. Remedial Investigation Report June, 1986 (Updated from April, 1985)
- 4. Remedial Investigation Report Appendices, Volume I, February, 1986 (Revised June, 86)
- 5. Remedial Investigation Report Appendices, Volume II, February, 1986 (Revised June, 1986)
- 6. Remedial Investigation Report Appendices, Volume III, February, 1986
- 7. 1986 Field Investigation and Supplemental Remedial Investigation Report Volume I, December, 1986
- 8. 1986 Field Investigation and Supplemental Remedial Investigation Report French Limited Site Volume II, Appendices December, 1986
- 9. 1986 Field Investigation Hydrology Report, December 19, 1986
- 10. Endangerment Assessment Report February, 1987
- 11. Endangerment Assessment Report April 1987 (Updated from February, 1987)
- 12. Feasibility Study Report, March 1987
- 13. In Situ Biodegradation Demonstration Report Volume I Executive Summary, October 30, 1987 Revised 11-11-87
- 14. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume I, November 30, 1987
- 15. In Situ Biodegradation Demonstration Report Volume II, October 30, 1987 (Revised February 1, 1988 at Site only)
- 16. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume II, November 30, 1987 + Appendices

- 17. In Situ Biodegradation Demonstration Report Volume III Appendices, October 30, 1987
- 18. In Situ Biodegradation Demonstration Report Volume III, Appendices, Supplemental Report, November 30, 1987
- 19. In Situ Biodegradation Demonstration Report French Limited Site, Volume IV October 30, 1987 + Appendices
- 20. In Situ Biodegradation Demonstration Supplemental Report French Limited Site, Volume IV November 30, 1987 + Appendices
- 21. In Situ Biodegradation Demonstration Report French Limited Site Volume V, October 30, 1987
- 22. In Situ Biodegradation Demonstration Report French Limited Site Volume V Appendices, November 30, 1987 Supplemental Report
- 23. In Situ Biodegradation Demonstration Report French Limited Site Volume VI Appendices, October 30, 1987
- 24. In Situ Biodegradation Demonstration Report French Limited Site Volume VII Appendices, October 30, 1987
- 25. In Situ Biodegradation Demonstration Report French Limited Site Volume VIII Appendices, October 30, 1987
- 26. In Situ Biodegradation Demonstration Report French Limited Site Volume IX Appendices, October 30, 1987
- 27. In Situ Biodegradation Demonstration Report French Limited Site Volume X Appendices, October 30, 1987
- 28. In Situ Biodegradation Demonstration Report French Limited Site Volume XI Appendices, October 30, 1987
- 29. In Situ Biodegradation Demonstration Report French Limited Site Volume XII Appendices, October 30, 1987
- 30. In Situ Biodegradation Demonstration Report French Limited Site Volume XIII Appendices, October 30, 1987

 This volume is missing.

- 31. In Situ Biodegradation Demonstration Report French Limited Site Volume XIV Appendices, October 30, 1987
- 32. In Situ Biodegradation Demonstration Report French Limited Site Volume XV Appendices, October 30, 1987
- 33. In Situ Biodegradation Demonstration Report French Limited Site Volume XVI Appendices, October 30, 1987
- 34. In Situ Biodegradation Demonstration Report French Limited Site Volume XVII Appendices, October 30, 1987
- 35. In Situ Biodegradation Demonstration Report French Limited Site Volume XVIII Appendices, October 30, 1987
- 36. Proposed In Situ Biodegradation Demonstration French Limited Site Phase III, April, 1987
- 37. In Situ Bioremediation Demonstration French Limited April, 1987 Monthly Report, Equipment Evaluation Phase IV
- 38. In Situ Bioremediation Demonstration French Limited May, 1987 Monthly Report, Equipment Evaluation Phase IV
- 39. In Situ Bioremediation Demonstration French Limited June, 1987 Monthly Report, Equipment Evaluation Phase IV
- 40. In Situ Bioremediation Demonstration French Limited July, 1987 Monthly Report, Equipment Evaluation Phase IV
- 41. In Situ Bioremediation Demonstration French Limited August, 1987 Monthly Report, Equipment Evaluation Phase IV
- 42. In Situ Bioremediation Demonstration French Limited November, 1987 Monthly Report, Equipment Evaluation Phase IV
- 43. In Situ Bioremediation Demonstration French Limited December, 1987 Monthly Report, Equipment Evaluation Phase IV
- 44. In Situ Bioremediation Demonstration French Limited January, 1988 Monthly Report, Equipment Evaluation Phase IV
- 45. In Situ Bioremediation Demonstration French Limited February, 1988 Monthly Report, Equipment Evaluation Phase IV

- 46. In Situ Bioremediation Demonstration French Limited March, 1988 Monthly Report, Equipment Evaluation Phase IV
- 47. In Situ Bioremediation Demonstration French Limited April, 1988 Monthly Report, Equipment Evaluation Phase IV
- 48. In Situ Biodegradation Demonstration French Limited May/June 1988 Monthly Report, Equipment Evaluation Phase IV
- 49. In Situ Bioremediation Demonstration French Limited July, 1988 Monthly Report, Equipment Evaluation Phase IV
- 50. In Situ Bioremediation Demonstration French Limited August, 1988 Monthly Report, Equipment Evaluation Phase IV
- 51. In Situ Bioremediation Demonstration French Limited September, 1988 Monthly Report, Equipment Evaluation Phase IV
- 52. Supplemental Biodegradation Equipment Evaluation French Limited Site Phase IV, September 26, 1988
- 53. In Situ Biodegradation Demonstration Phase III Quality Assurance Project Plan for French Limited Site, March, 1987
- 54. Addendum to Quality Assurance Project Plan for the French Limited Site In Situ Biodegradation Demonstration Phase III, February 16, 1990
- 55. Site Safety and Health Plan French Limited Site Phase III, April 1987 (Revision 2)
- 56. Remedial Action Plan Volume I April, 1990
- 57. Remedial Action Plan Volume I September, 1990 (Updated from April, 1990)
- 58. Remedial Action Plan Volume II Quality Assurance April, 1990
- 59. Remedial Action Plan Volume II Quality Assurance September, 1990 (Updated from April 1990) Revised June 3, 1991
- 60. Remedial Action Plan Volume II Quality Assurance June, 1990
 Appendix A Quality Assurance Sampling Procedures and
 Appendix B Analytical Methods B.1 B.53, September 22, 1989
 Revised September 28, 1990

- 61. Remedial Action Plan Volume III Health and Safety, July 20, 1990
- 62. Remedial Action Plan Volume IV Spill and Volatile Organic Release Contingency Plan (April 6, 1990)
- 63. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, May, 1990
 Page v.i.3 Missing
- 64. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990, (Updated from May, 1990)
- 65. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume I, February 1,1990
- 66. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume II, February 1, 1990
- 67. 1988 Slough Investigation Report French Limited Site, October 1988
- 68. Ambient Air Impact Risk Assessment Report, May 5, 1989
- 69. Workplan for the Shallow Aquifer Pumping Tests for the French Limited Site, July22, 1988Page 80 Missing
- 70. French Limited Site Hurricane Gilbert Preparation Report, October, 1988
- 71. Potable Water Well Installation Report French Limited Site, December 7, 1988
- 72. Bioresidue Fixation Alternatives Evaluation Report French Limited Site March 20, 1989
- 73. Hydrogeologic Characterization Report, March 1989
- 74. Hydrogeologic Characterization Report Appendices, March 1989
- 75. San Jacinto River May 19, 1989 Flood Event Report, June 1989
- 76. Post San Jacinto River May 1989 Flood Event Soils and Water Analysis Program Volume I, August 16, 1989
- 77. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume II Appendix A

- 78. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume III Appendix A, August 16, 1989
- 79. Riverdale Lake Area Remediation Program August 15, 1989
- 80. Flood and Migration Control Wall Design Report, August 16, 1989
- 81. Flood and Migration Control Wall Design Report Appendix C Access Way Design, September, 1989
- 82. North Pit Remediation Report French Limited Site, November 6, 1989
- 83. Installation Report for Flood and Migration Control Wall, January 8, 1990
- 84. Installation Report for Flood and Migration Control Wall Appendix A ENSR Site Logs
- 85. Installation Report for Flood and Migration Control Wall Appendix B Inspection Reports
- 86. Installation Report for Flood and Migration Control Wall Appendix C Pile Driving Inspection Report January 8, 1990
- 87. Flood Wall Gate Test Report French Limited Site, February 1990
- 88. French Limited Remediation Design Report Executive Summary Bioremediation/Shallow Aquifer, July, 1991
- 89. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume I of III Summary Report and Appendices A-H, July 1991
- 90. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume II of III Appendices I-M, June 1991
- 91. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume III of III Appendices N-P, June 1991
- 92. Bioremediation Facilities Design Report Volume II of IV Appendices, Reports and Calculations (March 20, 1991)
- 93. Bioremediation Facilities Design Report Volume III of IV Appendix E Design Specifications (March 20, 1991)

- 94. Bioremediation Facilities Design Report Volume IV of IV Air Monitoring, March 20, 1991
- 95. Public Health Assessment for French Limited March 30, 1993 from U.S. Department of Health and Human Services
- 96. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 1, Report, Appendices A-E
- 97. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 2, Appendix F
- 98. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 3, Appendix F continued
- 99. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 4, Appendix G
- CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 5,
 Appendix H
- 101. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 6, Appendix H continued
- 102. Record of Public Meeting Regarding Remedial Investigation and Feasibility Study (5-21-87)
- 103. Summary of Remedial Alternative Selection 1988
- 104. Declaration for the Record of Decision 1988
- 105. Record of Public Meeting Regarding Remedial Investigation and Feasibility Study (2-11-88) (Updated from June 21, 1987)
- 106. Consent Decree between the Federal Government and the FLTG
- 107. French Limited Superfund Site Community Relations Revised Plan August, 1989 Jacob's Engineering
- 108. Results of the French Limited Task Group Survey (Goldman and Company)
 April, 1987
- 109. Goldman Public Relations Clipping Report

- 110. BioGEE International, Inc., Project Report Biotreatability Study Using Isolated Indigenous Organisms, April, 1994
- 111. Field Evaluation of Biodegradation at the French Limited Site (Phase II) Volume I
- 112. Laboratory Evaluation of Biodegradation at the French Limited Site
- 113. French Limited Site Focused Feasibility Study (May 1987)
- 114. Annual Groundwater Monitoring Report, December 1993, Report and Appendices A-B
- 115. Annual Groundwater Monitoring Report, December 1993, Appendices C-H
- 116. DNAPL Study Remedial Alternative Selection and Feasibility Study Report,
 November 1994
- 117. Cell E and Cell D/F Remediation Verification Report
- 118. French Limited Wetlands Mitigation, Final Site Restoration Plan
- 119. French Limited Wetlands Mitigation, Site Selection Report
- 120. French Limited Wetlands Mitigation, 404 and 401 Permit Application, U.S. Army Corps of Engineers, Galveston, TX
- 121. Quality Assurance Report, February 15, 1993, Report No. QA93003
- 122. Quality Assurance Report, January 20, 1994, Report No. QA94001
- 123. Monthly Progress Report, January 1992
- 124. Monthly Progress Report, January, 1992 Appendices A-C
- 125. Monthly Progress Report, January, 1992 Appendices E, F
- 126. Monthly Progress Report, January, 1992 Appendices G
- 127. Monthly Progress Report, February, 1992
- 128. Monthly Progress Report, February, 1992 Appendices A-B
- 129. Monthly Progress Report, February, 1992 Appendices C 1, C 2

MONTHLY PROGRESS REPORT Site Maintenance

French Ltd. Project

- 130. Monthly Progress Report, February, 1992 Appendices D-E
- 131. Monthly Progress Report, March, 1992
- 132. Monthly Progress Report, March, 1992, Appendix A
- 133. Monthly Progress Report, April, 1992
- 134. Monthly Progress Report, April, 1992, Appendices A-B
- 135. Monthly Progress Report, May, 1992
- 136. Monthly Progress Report, May, 1992, Appendices A-B
- 137. Monthly Progress Report, June, 1992
- 138. Monthly Progress Report, June, 1992, Appendices A-B
- 139. Monthly Progress Report, July 1992
- 140. Monthly Progress Report, July 1992, Appendices A-B
- 141. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 1 of 3
- 142. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 2 of 3
- 143. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 3 of 3
- 144. Monthly Progress Report, August, 1992
- 145. Monthly Progress Report, August, 1992, Appendices A-B
- 146. Monthly Progress Report, September, 1992
- 147. Monthly Progress Report, September, 1992, Appendices A-B
- 148. Monthly Progress Report, October, 1992
- 149. Monthly Progress Report, October, 1992, Appendices A-B
- 150. Monthly Progress Report, November, 1992
- 151. Monthly Progress Report, November, 1992 Appendices A-B

- 152. Monthly Progress Report, December, 1992
- 153. Monthly Progress Report, December, 1992 Appendices A, B
- 154. Monthly Progress Report, January, 1993
- 155. Monthly Progress Report, February, 1993
- 156. Monthly Progress Report, March, 1993
- 157. Monthly Progress Report, April, 1993
- 158. Monthly Progress Report, May, 1993
- 159. Monthly Progress Report, June, 1993
- 160. Monthly Progress Report, July, 1993
- 161. Monthly Progress Report, August, 1993
- 162. Monthly Progress Report, September, 1993
- 163. Monthly Progress Report, October, 1993
- 164. Monthly Progress Report, November, 1993
- 165. Monthly Progress Report, December, 1993
- 166. Monthly Progress Report, January, 1994
- 167. Monthly Progress Report, February, 1994
- 168. Monthly Progress Report, March, 1994
- 169. Monthly Progress Report, April, 1994
- 170. Monthly Progress Report, May, 1994
- 171. Monthly Progress Report, June, 1994
- 172. Monthly Progress Report, July, 1994
- 173. Monthly Progress Report, August, 1994

MONTHLY PROGRESS REPORT Site Maintenance

French Ltd. Project FLTG, Incorporated

- 174. Monthly Progress Report, September, 1994
- 175. Monthly Progress Report, October, 1994
- 176. Monthly Progress Report, November, 1994
- 177. Monthly Progress Report, December, 1994

French Ltd. Project

FLTG, Incorporated

At the Crosby library...

- 1. Remedial Investigation Report June, 1986
- 2. Remedial Investigation Appendices Volume I June, I986 Revised from Feb. 1986
- 3. Remedial Investigation Appendices Volume II June, 1986 Revised from Feb. 1986
- 4. Remedial Investigation Appendices Volume III February, 1986
 Pages 1 and 2 of 10 Res. Engr Tab Missing
 Analytical Report Worksheet 7-8-9-10 Missing
 Pages 1 and 2 of 6 Missing
 Tab 9 H 1-8 Missing, H 11-19 Missing, Page 1 of 10 Missing
 Page 3 Worksheet Missing
 Tab 10 H 1-3 Missing, Page 3-6 of 6 Missing, Page 1-6 Missing
 Tab 12 Page 2-10 of 10 Missing
- 5. 1986 Field Investigation and Supplemental Remedial Investigation Report Volume I, December, 1986
- 6. 1986 Field Investigation and Supplemental Remedial Investigation Report Volume II, Appendices, December 1986
- 7. 1986 Field Investigation Hydrology Report, December 19, 1986
- 8. Feasibility Study Report, March 1987
- 9. Feasibility Study Report, March 1987
- 10. French Limited Site Focused Feasibility Study, May 1987
- 11. Endangerment Assessment Report February 1987
- 12. Endangerment Assessment Report April 1987
- 13. Endangerment Assessment Report April 1987
- 14. In Situ Biodegradation Demonstration Report Volume I Executive Summary October, 1987 (Revised 12-15-87)
- In Situ Biodegradation Demonstration Report Volume II October 30, 1987

- 16. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume I, November 30, 1987 Missing Supplements to 5-6 and 7 to 10
- 17. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume II, November 30, 1987 + Appendices
- 18. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume III, November 30, 1987 + Appendices
- 19. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume IV, November 30, 1987 -Appendices
- 20. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume V Appendices, November 30, 1987
- 21. Results of the French Limited Task Group Survey (Goldman and Company)
 April 1987
- 22. Goldman Public Relations Clipping Report
- 23. Consent Decree between the Federal Government and the FLTG
- 24. Consent Decree between the Federal Government and the FLTG
- 25. Laboratory Evaluation of Biodegradation at the French Limited Site, December 1986.
- 26. Field Evaluation of Biodegradation at the French Limited Site (Phase II) Volume I, March, 1987
- 27. Bioremediation Facilities Design Report Volume II of IV Appendices, Reports and Calculations March 20, 1991
- 28. Bioremediation Facilities Design Report Volume III of IV Appendix E Design Specifications March 20, 1991
- 29. Bioremediation Facilities Design Report Volume IV of IV Air Monitoring, March 20, 1991
- 30. Remedial Action Plan Volume I, September 28, 1990
- 31. Remedial Action Plan Volume II Quality Assurance, Revised June 3, 1991

- 32. Remedial Action Plan Volume II Appendix A Quality Assurance Sampling Procedures and Appendix B Analytical Methods B.1 B.53, September 28, 1990
- 33. Remedial Action Plan Volume III Health and Safety, July 20, 1990
- 34. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990
- 35. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990
- 36. Hydrogeologic Characterization Report, March 1989
- 37. Hydrogeologic Characterization Report Appendices, March 1989
- 38. Supplemental Biodegradation Equipment Evaluation French Limited Site Phase IV, September 26, 1988
- 39. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume I, February 1, 1990
- 40. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume II, February 1, 1990
- 41. Site Safety and Health Plan French Limited Site Phase III, April 1987 (Revision 2)
- 42. San Jacinto River May 19, 1989 Flood Event Report, June 1989
- 43. Post San Jacinto River May 1989 Flood Event Soils and Water Analysis Program Volume I, August 16, 1989
- 44. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume II, Appendix A
- 45. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume III, Appendix A, August 16, 1989
- 46. 1988 Slough Investigation Report French Limited Site, October 1988
- 47. Flood and Migration Control Wall Design Report, August 16, 1989

- 48. Flood and Migration Control Wall Design Report (Flood is spelled incorrectly on Volume Cover) + Appendix C Access way Design September 1989
- 49. Installation Report for Flood and Migration Control Wall January 8, 1990
- 50. Installation Report for Flood and Migration Control Wall Appendix A ENSR Site Logs
- 51. Installation Report for Flood and Migration Control Wall Appendix B Inspection Reports
- 52. Installation Report for Flood and Migration Control WallAppendix C Pile Driving Inspection Report January 8, 1990
- 53. Flood Wall Gate Test Report French Limited Site, February 1990
- 54. North Pit Remediation Report French Limited Site, November 6, 1989
- Workplan for the Shallow Aquifer Pumping Tests for the French Limited Site, July
 1988
 (Additional Title Pumping Test Program for Shallow Alluvial Aquifer Zone)
- 56. French Limited Site Hurricane Gilbert Preparation Report October, 1988
- 57. Riverdale Lake Area Remediation Program, August 15, 1989
- 58. Addendum to Quality Assurance Project Plan for the French Limited Site In Situ Biodegradation Demonstration Phase III, February 16, 1990
- 59. Potable Water Well Installation Report French Limited Site, December 7, 1988
- 60. Bioresidue Fixation Alternatives Evaluation Report French Limited Site March 20, 1989
- 61. Ambient Air Impact Risk Assessment Report, May 5, 1989
- 62. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume I of III Summary Report and Appendices A-H, July 1991
- 63. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume II of III Appendices I-M, June 1991
- 64. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume III of III
 Appendices N-P, June 1991

- 65. French Ltd. Remediation Design Report Executive Summary Bioremediation Shallow Aquifer July 1991
- 66. BioGEE International, Inc., Project Report Biotreatability Study Using Isolated Indigenous Organisms, April 15, 1994
- 67. Black EPA Binder
- 68. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 1, Report, Appendices A-E
- 69. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 2, Appendix F
- 70. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 3
 Appendix F continued
- 71. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 4, Appendix G
- 72. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 5, Appendix H
- 73. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 6, Appendix H continued
- 74. Equipment Evaluation Phase IV Report November, 1987 Monthly Report
- 75. Equipment Evaluation Phase IV Report December, 1987 Monthly Report
- 76. Microfiche Field Reports 1988 -small box
- 77. Annual Groundwater Monitoring Report, December 1993, Report and Appendices A-B
- 78. Annual Groundwater Monitoring Report, December 1993, Appendices C-H
- 79. DNAPL Study Remedial Alternative Selection and Feasibility Study Report,
 November 1994
- 80. Cell E and Cell D/F Remediation Verification Report
- 81. French Limited Wetlands Mitigation, Final Site Restoration Plan

- 82. French Limited Wetlands Mitigation, Site Selection Report
- 83. French Limited Wetlands Mitigation, 404 and 401 Permit Application, U.S. Army Corps of Engineers, Galveston, TX
- 84. Quality Assurance Report, February 15, 1993, Report No. QA93003
- 85. Quality Assurance Report, January 20, 1994, Report No. QA94001
- 86. Monthly Progress Report, January, 1992
- 87. Monthly Progress Report, January, 1992, Appendices A-C
- 88. Monthly Progress Report, January, 1992, Appendices E-F
- 89. Monthly Progress Report, January, 1992, Appendix G
- 90. Monthly Progress Report, February, 1992
- 91. Monthly Progress Report, February, 1992, Appendices A-B
- 92. Monthly Progress Report, February, 1992, Appendices C-1, C-2
- 93. Monthly Progress Report, February, 1992, Appendices D-E
- 94. Monthly Progress Report, March, 1992
- 95. Monthly Progress Report, March, 1992, Appendix A
- 96. Monthly Progress Report, April, 1992
- 97. Monthly Progress Report, April, 1992, Appendices A-B
- 98. Monthly Progress Report, May, 1992
- 99. Monthly Progress Report, May, 1992, Appendices A-B
- 100. Monthly Progress Report, June, 1992
- 101. Monthly Progress Report, June, 1992, Appendices A-B
- 102. Monthly Progress Report, July, 1992
- 103. Monthly Progress Report, July, 1992, Appendices A-B

- 104. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 1 of 3
- 105. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 2 of 3
- 106. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 3 of 3
- 107. Monthly Progress Report, August, 1992
- 108. Monthly Progress Report, August, 1992, Appendices A-B
- 109. Monthly Progress Report, September, 1992
- 110. Monthly Progress Report, September, 1992, Appendices A-B
- 111. Monthly Progress Report, October, 1992
- 112. Monthly Progress Report, October, 1992, Appendices A-B
- 113. Monthly Progress Report, November, 1992
- 114. Monthly Progress Report, November, 1992, Appendices A-B
- 115. Monthly Progress Report, December, 1992
- 116. Monthly Progress Report, December, 1992, Appendices A-B
- 117. Monthly Progress Report, January, 1993
- 118. Monthly Progress Report, February, 1993
- 119. Monthly Progress Report, March, 1993
- 120. Monthly Progress Report, April, 1993
- 121. Monthly Progress Report, May, 1993
- 122. Monthly Progress Report, June, 1993
- 123. Monthly Progress Report, July, 1993
- 124. Monthly Progress Report, August, 1993
- 125. Monthly Progress Report, September, 1993

MONTHLY PROGRESS REPORT Site Maintenance

French Ltd. Project FLTG, Incorporated

- 126. Monthly Progress Report, October, 1993
- 127. Monthly Progress Report, November, 1993
- 128. Monthly Progress Report, December, 1993
- 129. Monthly Progress Report, January, 1994
- 130. Monthly Progress Report, February, 1994
- 131. Monthly Progress Report, March, 1994
- 132. Monthly Progress Report, April, 1994
- 133. Monthly Progress Report, May, 1994
- 134. Monthly Progress Report, June, 1994
- 135. Monthly Progress Report, July, 1994
- 136. Monthly Progress Report, August, 1994
- 137. Monthly Progress Report, September, 1994
- 138. Monthly Progress Report, October, 1994
- 139. Monthly Progress Report, November, 1994
- 140. Monthly Progress Report, December, 1994

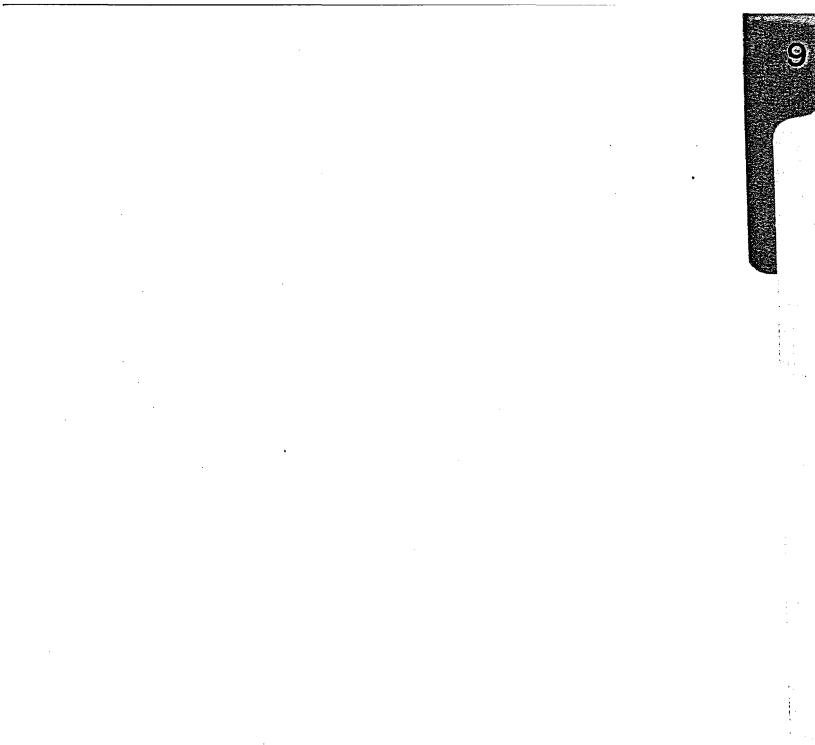
12 Large Brown Folders:

- 1. Administrative Record Index 2 folders
 Administrative Record 09-26-79 thru 05-29-83
 Administrative Record 06-03-83 thru 11-28-83
 Administrative Record 02-28-84
 Administrative Record 03-09-84
 Technical Comments on Remediation Investigation Report 2-84
 Supplemental Investigation Resource Engr. 1-84
 Administrative Record 3-9-84
- 2. Administrative Record 08-31-84
 Administrative Record 10-29-84 thru 01-22-85

MONTHLY PROGRESS REPORT Site Maintenance

French Ltd. Project

FLTG, Incorporated


French Ltd. Technical and Regulatory Concepts for In-Place Closure, 09-84 Supplementary Investigation, May 1984 French Ltd. Field Activities Work Plan, February 1985 Supplementary Investigation Attachments, May 1985

- 3. Administrative Record 02-04-85
 Remedial Investigation, Vol. I Report, April 1985
 Remedial Investigation, Vol. II Appendices, April 1985
- 4. Administrative Record 04-08-85 thru 11-26-85
 Administrative Record 02-14-86 thru 04-04-86
 Technical Report for Resource Engineering, 12-03-85
 Appendix QA Program for French Ltd., 12-18-85
 1985 Field Investigation Report Appendices, January, 1986
 1985 Field Investigation Report, January, 1986
- 5. Administrative Record 04-01-86
 Remedial Investigation Report Appendices, Vol. II, April, 1986
- 6. Administrative Record 4-1-86
- 7. Administrative Record 05-08-86 thru 05-12-86
 Administrative Record 06-01-86
 Administrative Record 01-05-87
 Remedial Investigation Report, June 1986
 Laboratory Evaluation of Biodegradation, 12-86
 1986 Field Investigation Hydrology Report, 12-86
 Endangerment Assessment Report, 2-87
- 8. Feasibility Study, March 1987
- 9. Administrative Report 03-11-87 thru 03-25-87
 Administrative Report 4-1-87
 Administrative Report 4-7-87
 In Situ Biodegradation Demonstration Phase III QA Project Plan 3-87
 Endangerment Assessment Report, 4-87
 Proposed In Situ Biodegradation Demonstration French Limited Site Phase III 4-87
- 10. Administrative Report 4-15-87 thru 5-I-87
 Administrative Report 5-21-87 thru 7-2-87
 French Limited Focused Feasibility Study, ERT 5-87
 Revised Field Evaluation of Biodegradation at French Site Phase II Vol. I
 -Revised 7-10-87
- 11. Administrative Report 7-20-87 11-23-87

Administrative Report Undated Documents 000122-000134 In Situ Biodegradation Demonstration Report Vol. I Executive Summary 10-87 French Limited Site Work Plan Vol. I Project Activities and Sample Plan

12. Texas Air Control Board Regulations I thru IX
Standard Exemption List
Application for Permit

During the month of January, the status of both libraries have been reviewed and the above information found to be accurate.

9.0 WETLANDS RESTORATION

9.1 Summary of Activities and Progress

Conducted safety meetings at the start of each work shift; inspected all equipment for safety compliance each shift; used daily lottery ticket safety awareness program.

Updated site work plan based on field progress.

Revised flow channel location to incorporate existing elevation features and to reduce the scope of the excavation work.

Requested lump sum bids for the three bridges.

Maintained site security to protect the public and project equipment.

Modified excavation plan to save good vegetation; salvaged useful vegetation.

Developing a public relations plan.

Reviewed the project status, progress, and issues with the agency review committee; the agencies are satisfied with site progress.

Dewatered the site initially; some dewatering was required after each significant rainfall; frequent heavy rains delayed the excavation work on site; excavated about 40% of the flow channels.

MONTHLY PROGRESS REPORT Wetlands Restoration

French Ltd. Project FLTG, Incorporated

9.2 Problem Areas and Solutions

Problem

Solution

Trees in excavation area.

Transplant desirable trees to temporary nursery area; treat large trees with nutrients.

Water inflow to site.

Seal culverts; secure sewer lines and stormwater lines; periodic pumping.

Safety awareness

Daily safety meeting; lottery ticket program; frequent equipment inspections.

Excavation in wet, soft areas.

Revise work schedule to allow drainage; pump water on "off" days.

9.3 Problems Resolved

None.

9.4 Deliverables Submitted

December, 1994, Monthly Report.

9.5 Upcoming Events and Activities

Daily safety program.

Continue civil work on site.

Excavate and save topsoil.

Contour site.

MONTHLY PROGRESS REPORT Wetlands Restoration

French Ltd. Project FLTG, Incorporated

Develop detailed cost estimate for Brownwood.

Develop re-vegetation plan.

Develop forecast of maintenance requirements.

Develop community relations plan.